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! Abstrat

In seeking rational models of time series, the concept of approximating

second order statistical relationships (i.e., the Yule-Walker equations) is

often explicitly or implicitly invoked. The parameters of the hypothesized

rational model are typically selected so that these relationships 'best

represent' a set of antooorrelation lag estimates computed from time series

observations. One of the objectives of this paper will be that of

establishing this fundamental approach to the generation of rational models.

An examination of many popular oontemporary spectral estimation methods

reveals that the parameters of a hypothesized rational model are estimated

upon using a *minimal' set of Yule-Walker equation evaluations. This results

in an undesired parameter hypersensitivity and a subsequent decrease in

estimation performance. To counteract this parameter hypersensitivity, the

concept of using more than the minimal naber of Yule-Walker equation

evaluations is herein advocated. It is shown that by taking this

overdetermined parametric evaluation approach, a reduction in data induced

model parameter hypersensitivity is obtained, and, a corresponding

improvement in modeling performance results. Noreover, upon adapting a

singular value decomposition representation of an extended order

autocorrelation matrix estimate to this procedure, a desired model order

determination method is obtained and a further significant improvement in

modeling performance is achieved. This approach makes possible the

generation of low order, high quality rational spectral estimates from short

data lengths.
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T. T-trodution

In a variety of applications Ssh as found in radar doppler processing.

adaptive filtering, speech processing. underwater acoustics, Seismology,

econometrics, spectral estimation and array processing. it is desired to

estimate the Statistical characteristics of a wide-sense stationary time

series. More often than not. this required characterization is embodied in

the time series' antocorrelation lag sequence as specified by

in which B and - denote the operations of expectation ad complex

conjugation, respectively. From this definition, the well-known property

that the antocorrelation lags are complex conjugate symmetric (i.e.. r,(-a)
Tx(n)) is readily established. We will automatically ass-se this property
whenever negative lag autocorrelation elements (or their estimates) are

required.

The Second order statistical characterization as represented by the

autocorrelation sequence may be given an 'equivalent' frequency domain

interpretation. Namely, upon taking the Fourier transform of the

autocorrelation sequence, that is

Sx(eJW*) -r 1(n) *-jaw (1.2)

we obtain the associated sower seectral density function Sx(eJ*) in which the

normalized frequency variable a takes on values in C-x~wJ. This function

possesses a ninber of salient properties among which are that it is a

positive semidefinite, symmetric (if the time series is real valued), and,

periodic function of w. This function Is seen to have a Fourier series

interpretation in which the antocorrelatios lags play the role of the Fourier

coefficients. It therefore follows that these coefficients may be determined

from the power spectral density function through the Fourier series

coefficient integral expression

rxn 1 JSX(*JO) eja do (1.8)
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Relationships (1.2) and (1.3) form a Fourier transform pair so that knowledge

of the antocorrelation sequence is equivalent to knowledge of the power

spectral density function and vice versa. To belabor this point in order to

establish the viewpoint that spectral estimation and autocorrelation lag

estimation are conceptually equivalent.

In the classical spectral estimation problem, it is desired to effect an

estimate of the underlying power spectral density function with this estimate

being based on gmhz a finite set of tie series observations. Typically.

these observations will be composed of a set of contiguous data measurements

taken at equispaced time intervals T as represented by

x(1). z(2), . .. x(N) (1.4)

where N will be referred to as the data length and we have chosen to suppress

the sampling period T. It is apparent that unless some constraints are

imposed on the basic nature of the power spectral density function, there

exists a fundamental incompatbility in seeking an estimate of the infinite

parameter function (1.2) (i.e., the infinite set of antocorrelatioa lags

rz(n)) based on the finite set of observations (1.4). Investigators have

often resolved this dilemma by postulating a finite parameter model for the

power spectral density function. The time series observations (1.4) are then

used to fix the paremtors of this parametric model using an appropriat

estimation procedure.

Without doubt, the most widely used and studied of finite paremetric

models are the so-called rational modols. When employing a rational model,

we are seeking to approximate the generally infinite series expansion (1.2)

by a magnitude squared ratio of polynomials in the variable e-JO, that is

Ibo + bloeJO + +. bq jq 2
SleJU) = 111 1.5)

11 + a, e-J* + 8pe-JPO

The finite nmber of parameters in this model then provides the mechanim for

circumventing the aforementioned parameter mismatch dilemma. Namely, if the

data longth paemoter N adequately exceeds this rational function's number of

* parmeters (i.e., p+q+l). then it is feasible to utilize the given time

series observations (1.4) to estimate values for those parameters. A few

words are now appropriate concerning the adequacy of

$ ..
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rational models in representing power spectral density functions. It is well

known that if a power spectral density function is continuous in the variable

a, then it may be approximated arbitrarily closely by a rational function of

form (1.5) if the order parameters p and q are selected suitably large [411.

Comforted by this knowledge, rational functions have become a standard tool

of spectral estimation theoreticians. As an interesting side note, it is

ironical that the origin of spectral estimation was in the use of rational

models for characterizing time series composed of sinusoide in white noise.

Members of this class of time series possess AJiiu noJaM power spectral

density functions and are therefore presumably not representable by a

rational model. As we will see in Section III, however, it is possible to

suitably adapt a specific rational model so as to satisfactorily characterize

this class of time series.

This paper is primarily concerned with developing a modeling method

which utilizes an overdetermined set of statistical equations for estimating

a rational model's parameters. Using this approach, it is found that the

resultant modeling performance is generally better than that achieved by

other popularly used parametric methods. Although the approach here taken

reflects heavily upon the author's previous works E15]-[22], much of this

paper will be concerned with formulating many contemporary spectral

estimation methods in a common autocorrelation representation setting. it

must be emphasized that our main objective is not that of giving an

encylopedic coverage of the many available rational spectral estimation

techniques. This paper in conjunction with the exoellent recent publications

[231,[311,[371, however, provides a reasonable complete coverage of

parametric methods.

In the remainder of this section, we shall consider two special classes

of rational functions and give a brief historical perspective on their sage

in spectral estimation theory. These two classes are commonly referred to as

the moving average (MA) and the antoregressive (AR) spectral models. A

moving average model is defined to be a rational function (1.5) in which all

the Sk parameters are zero (i.e., it has only numerator dynamics) while an

autoregressive model is one for which all the bk parameters are zero ezoept

for bo (i.e., it has only denominator dynamics). By-in-large, these two

classes of rational functions have formed the basic modeling tools in

contemporary spectral estimation theory.

4
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Fouzier analysis has played a primary role in such of the earlier as

well as more recent efforts at spectrally characterizin ezporimentally

collected data. As an example. Schuster applied the periodogram method for

detecting hidden periodicities in sun spot activity data at the turn of the

century (581. In a more recent classical work, altokas ad Tukey presented

a generalized procedure for effecting spectral estimates [81 . This involved

the two stop procedure of (i) determining autocorrelation lag estimates *z(n)

using the provided data, ad, (ii) taking the Fourier transform of these

estinates.1  The power spectral density estimate which arose when taking

this approach then took the form

q

SleJ) I 2 win) 'z(n) e-j (1.6)

n--q

where w(n) is a symmetric data window that is chosen to achieve various

desirable effects such as side lobe reduction. This window is often selected

to be rectangular in which case v(n) - 1 although other choices may be nore

desirable for a given application. A description of some of the more popular

choices for the data window may be found in numerous texts (e.g.. see refs.
[33] ,[5O] I,(['5]) .

In the Blaomm-Takey estimate (1.6), it is seen that only a finite

nuber of sumand terms (i.e., 2q+1) are involved in the spectral estimate.

This is a direct oonsequence of the fact that g2LZ a finite set of

autooorrelation lag estimates are obtainable from the observation set (1.4)

if standard lag estimation methods are employed. Due to this finite sus

structure, we will now show that the Blakeman-Tukey estimation method is a

special case of the more general rational Nk spectral model. In particular,

a spectral model is said to be a moving aerate model of order q (i.e..

A(q)) if it may be put into the form

1 To shall hereafter use the aret s- 1 (A ) to denote a statistical

estimate.

Il,
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SNA(eJU) = I bo + bl -Ji + ... + bq -Jq* 12

(1.7)

- I q(OJ*) 12

The q+1 parameters be, bl, ... bq which identify this A(q) model are seen

to form a qth order polynomial Bq(eJW) in the variable e-Jo. A moving

average model is then seen to be a speOial case of the more general rational

model (1.5) in which the denominator polynomial has been set equal to the

constant one.

If the polynomial Bq(eJ*) constituting the moving average model (1.7) is

factored, it is possible to provide additional insight into a K model's

properties. This factorization is seen to give rise to the equivalent

representation

q
SA(.iM) - beO2 T (1 - zke-_J)(1 - keJ) (1.8)

k-l

in which the zk are the roots of the polynomial Bq(eiJ). The zeroes of a XA

spectral nodal are seen to occur in reciprocal pairs. Due to the basic

nature of this factorization, moving average models are therefore also

-wmonly referred to as a models. If any of the roots zk are close to

the unit circle (i.e., zk jre.0k), it is clear that SA(eiJ) will contain

sharply defined notches at frequencies in a neighborhood associated with

these roots (i.e.. 0 - ak). It is therefore apparent that MA models will be

particularly effective when approximating spectra that contain sharply

defined notches (zero like behavior), but, do not contain sharply defined

peaks. Whenever a spectrum contains sharply defined peaks, it is possible to

simulate their effect at the cost of many additional zeroes (i.e., a high MA

order) for an adequate representation. With this in mind, MA models should

be normally avoided whenever a peaky type behavior in the underlying spectrum

is suspected (as may be made evident from a preliminary Blackman-Tukey

estimate).

To establish the fact that the Blackman-Takey approach to spectral

estimation is of a moving average structure, it is possible to give yet

another equivalent representation to the MA(q) expression (1.7). This will



entail explicitly carrying out the indicated polynomial product

Bq(oJ) Bq(eJW) thereby giving

q
SA(oei) - I an e-Jan (1.9)

n-q

in which the complex conjugate sysmetria on parameters are related to the

original bn parameters according to

q
On  b bk. n  -a..niq (1.10)

k-0

Upon setting the an equal to w(n)rx(n), it is apparent that the

Blackman-Tukey estimate (1.6) is a special form MA(q) model. This fact is

usually overlooked by investigators who have considered the Blackman-Tukey

method as well as the periodogram as nonparmetric spectral estimators. When

viewed from the approach here taken, however, each of these procedures is

" recognized as being a realization of a MA parametric model.

AR Model

When we compare the MA(q) spectral model expression (1.9) with the

theoretical power spectral density function (1.2) which is being estimated,

* it is apparent that a serious modeling mimatch can arise whenever the

underlying autocorrelation lags are such that the rz(n) are not approximately

equal to zero for n ) q. For example, this undesirable condition arises when

the time series under study is composed of sinusoids in white noise.

Conversely, this condition does not arise for broad band signals. The

sinusoid example is mentioned since it forms one of the more interesting

special case time series to which spectral estimation techniques are applied.

A special treatment of the sinusoids in white noise case will be given in

Section III.

In recognition of this potential shortcoming of MA models, investigators

have examined alternate rational spectral models which do not invoke the

unnecessarily harsh requirement of a truncated autocorrelation lag behavior.

7 /
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Undoubtably, the most widely used of such modelt is the AR model. Namely, a

spectral model is said to be an autoregressive model of order p (i.e., AR(p))

if it may be put into the form

SAR(eJo) I b+ aIeip4

lb 1 2W + a2e-JW + + (1.11)u

IA,(eJ*)I2

This AR(p) model has a functional behavior which is completely characterized

by its p+1 parameters boo a1, a2 , .. g, ap. The characteristic pth order

.polynonial Ap(eiJ) is seen to influence the frequency behavior of the

estimate while the parameter bo controls the level.

As in the MA model case, valuable insight into the capabilities of AR

modeling is provided upon factoring the polynomial AP(ei). This is found to

result in the equivalent representation

SAit(oJ) = (1.12)

TT (1-TkO-J) (l-;keiJ)
k-1

where the pk are the roots of A(eJU). The poles of this AIL spectral model

are seen to occur in reciprocal pairs. For reasons which are self evident,

the AR(p) spectral model is also commonly referred to as an all-pole model.

As such, it is particularly appropriate for modeling spectra which contain

sharply defined peaks (pole like behavior), but, do not contain sharply

defined notches. If a spectrum does possess notches, however, it is possible

to simulate their effect at the cost of many additional poles (i.e., a high

AR order). In terms of parameter parsimony, it is therefore prudent to avoid

AR models whenever notches in the underlying spectrum are suspected (this may

be made evident from a preliminary Blackman-Takey estimate).

Autoreressive models were used by Yule [661 and Walker [631 in

forecasting trends of economically based time series. These models were then

employed by Burg (131 in 1967 and Perzon [531 in 1968 to achieve spectral

estimates which did not possess the aforementioned deficiencies of the MA

model. The Burg method is of particular interest since it offered a now

..... .l nI m ~ lllII i na ... e : .. . ..n.. ..S



insight into spectral modeling and introduced a nmber of concepts that are

now standard tools of spectral estimation. This includes an efficient

lattice structured implementation of the Burg method which has since been

examined and advanced by many investigators (e.g., see ref. [44]). It is not

an exaggeration to say that Burg's method gave rise to a literal explosion in

research activity directed towards evolving improved rational modeling

methods.

In many applications, the underlying power spectral density function

will contain both notch and peak like behavior. As such, neither the M& nor

the AR model is the most appropriate model representation from a parameter
parsimony view point. The moe gnala rational odel (1.5), however, is!

capable of efficiently representing suoh behavior. This most general

rational model is commonly referred to as an autoregressive-moving average

model of order (p.q) (i.e., AREA (p,q)) with its frequency characterization

being given by

(bo + bie-Ji +... + bqe-JqW(
2

+ jei6 + ... + ae JP

IAp(eJ) ( (1.13)

An ARMA model is seen to have a frequency characterization which is the

composite of a MA and an AR model. To further reinforce this interpretation.

we have the following equivalent representation upon factoring the

polynomials Ap(eJ) and Bq(eiJ) which characterize its frequency behavior

q

TT (1 - zk e-J")(l-!keJ*)

SANA(W) N lb0 12 kui

(1 - Pk *-JW)(1 - eJ*) (1.14)
k-i

9
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An ARA model is seen to possess q zeroes and p poles, and, as such it is

generally a much more effective model than are its more specialized MA (all

zero) and AR (all pole) model oounterparts. These poles and zeroes are seen

to occur in reciprooal pairs.

Although ARM&A models are the most preferable choice for most

applications, many practitioners have opted to utilize either MA or AR

models. There is an increasing awareness, however, of the general

superiority of ARNA modeling. This has given rise to a renewed effort to

generate computationally efficient ARNA modeling algorithms. A particularly

effective approach to ARNA modeling will be presented in this paper.

10



IT. Rational Modeling - Exact Autocorrelation Knowl21ed

In this section, the theoretical autocorrelation characteristics of NA,

AR and ARNA random processes are examined separately. This characterization

will in turn enable us to intelligently select the most appropriate rational

model which best represents a Liven set of exact autocorrelation lags

rx(O), rx(l)p s .. , rx(s) (2.1)

Moreover, a systematic procedure for identifying the selected model's

parameters from these given autocorrelation lag values is also developed.

Although the assumption here made of exact aitocorrelatiom information is

highly idealistic and almost never met in applications, the insight thereby

provided is helpful when considering the more practical problem of generating

rational model estimates from raw time series observations.
To begin this analysis, it will be hereafter assumed that the time

series under examination is generated (or can be adequately modeled) as the

response associated with the linear operator

p q
x(n) + Iak x(n-k) " bk s(n-k) (2.2)

k-1 k-O

in which the excitation time series (s(n)) is taken to be a sequence of zero

mean, unit variance, uncorrelated random variables (i.e., normalized white

noise) that is taken to be unobservable. This excitation-response behavior
is depicted in Figure 2.1. Using standard techniques, it is readily shown

that the power spectral density function associated with the response time
series is given by the ANM(p,q) rational form

,bo + b s-J. + ... + bq *-Jq. J
x(eiw) I1 + a, •eju + ... + ap e-Jpu

Thus, there is an equivalency between as assumed ARN (p,q) spectral model,
and, the response of the recursive linear operator (2.2) to white noise. In

this section, the required rational modeling will be developed through use of

the time series description (2.2) and its associated autooorrelation

characterization. It is interesting to note that most available rational

spectral estimation techniques are based upon a time domain characterization.

11
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i= ti) I qt•J,. xin)

Tkb te Noi so Response

Excitation Transfer Function

Figure 2.1. Model of rational tine series.

The meohanism for offoeting the required rational modeling are the

so-called Yule-Walker equations whish govern linear relationship (2.2).

Namely, upon multiplying both sides of this relationship by 7(&-) and then

taking expected values, it is found that the Yule-Walker equations

p q
I akrx(n-k) - bi h(i-n) (2.3)

k=0 1eo

arise where ao = 1. The entity h(n) heroin used corresponds to the

unit-it ..,e (i.e., Kronecker delta) response of linear operator (2.2). This

unit-impulse response may also be interpreted as being the inverse Fourier

transform of the linear operator's transfer function Bq(OJ*)/A(J*).

what is to follow, it will be assumed that this linear operator is catoal

thereby implying that h(n) - 0 for n negative. Although this asumption is

not essential in the analysis which follows, it is here imposed in

recognition of the fact that most applications are inherently involved with

causal operations. Adaption to the case where noncausal operations are more

appropriate is straightforward and will not be given.

The Yule-Walker equations (2.3) take on a particularly simple form when

the linear operator (2.2) which they describe is constrained to be a MA or an

AR linear operator. To delineate this fact, we shall now examine separately

the basic characteristics of the Yule-Walker equations when the undtlying

linear model is taken to be MA. A. and ARA.

12
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MA Time Series

The time series (x(n)) is said to be a moving average random process if

it is generated according to the linear nonrecursive relationship

q

x(n) I bk s(n-k) (2.4)

k-0

where (s(n)) is the aforementioned normalized white noise excitation process.

According to the general Yule-Walker equations (2.3). the response's

autocorrelation sequence is therefore specified by

IF ki- -q jn j q (2.5)
cr(a) d k

0 otherwise

where use of the facts that ak - 0, and, h(n) - bn for 0 j n . q have been

inorporated. Thus, the autocorrelation sequence associated with a moving

average process is seen to be of finite length (i.e., 2q+l) with the length

identifying the order of the KA(q) process.

We shall now consider the problem of identifying the MAf parameters bk

which correspond to a given 2q+1 length autocorrelation sequence r1 (n) for

-q. nq. This identification will be made by examining the spectral density

function associated with the autocorrelation sequence. In particular, upon

taking the z-transform (in lieu of the Fourier transform) of the given 2q+1

length autocorrelation sequence, we have upon using relationship (2.5)

q

Sx(z) rx(n) Cn

n-q

n- q k 0

q q

I~ bk z-k I j za (2.6)

k=O M-0



Since the finite power series Sx(z) has complex conjugate coefficients (i.e.,

rz(-n) - rz(n)), it follows that the zeroes of this power series must occur

in reciprocal pairs. With this in mind, it is therefore always possible to

factor the power spectral density function as

S =(z) - 62 (1-zkz-1) (1-kz) (2.7)

where a is a real scalar. Upon comparing expressions (2.6) and (2.7), it is

apparent that

q q
Ibk zk - U(1-zkz-l) (2.8)

k-0 k-1

Thus, the required bk parmeter identification is achieved by carrying out

the right side multiplications in expression (2.8) and then equating

coefficients of equal powers of z-k. The most critical step of this

identification procedure is the factorization of the known power series Sz(z)

as given in equation (2.7).

One point of caution should be raised in following this approach. It

arises due to the fact that although the factorization of Sx(z) into its 2q

first order product terms is unique, the decomposition (2.7) is certainly

not. This is a direct consequence of the appearance of the roots of Sz(Z ) in

reciprocal pairs. Thus, the term (1-zlz-1) may be replaced by (1-z1-zl-1) in

expression (2.8) without destroying the required structure (2.6). This

replacement, however, will in general lead to a different set of bk

parmeters. Since there are typically q different first order reciprocal

pairs in the factorization (2.7), it then follows that there are 2 q different

bn parmeter sets which are oopatable with the autocorrelation identity

(2.5). The one normally chosen corresponds to the so-called mini.mum.duay
selection in which the zk roots used in expression (2.8) are selected so that

they all have magnitudes less than or equal to one.
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AR Time Series

The tine seties (z(n)) is said to be an autoregressive (Al) process of

order p if it is generated according to the recursive relationship

p
z(n) + I ak z(r-k) - bos(n) (2.9)

k-1

where (&(a)) is the aforementioned normalized white noise process. The

Yule-Walker equations (2.3) indicate that the lR(p) autocorrelatioL elements

are related by

rz(n) + at rz(n-k) - {b, 2  (2.10)

k-i

where use of the facts that h(O) - bo and h(n) - 0 for n ( 0 have been made.

In order to effect a direct procedure for identifying the IL(p) model's

p+1 parameters a1 , a2 . ... , ap, bo which best represent the set of

autocorrelation lag values (2.1), one say evaluate the first p+1 of the

governing Yule-Walker equations. This evaluation when put into a matrix

format takes the form,

rx (0) rx(-1) • • • rx(-P) 1 lb.l

rz(1) rx(O) • • . rz(-P+l) al 0

a2 0 (2.11a)

rz(p) rz(p-l) rx(O) a p. 0 -

is



o0 sore compactly as

R E Ibo l2 1  (2.lb)
In this expression, R is the (p+l)z(p+l) AR autocorrelation matrix whose

elements are given by

I(i.j) - rx(i-J) 1 1 i 1 p+1 (2.12)

A is the (p+l)xl autoregressive parameter vector with first component equal

to one, that is
•t = 1,aj, 2D .... ap]' ( . 3A - 1-el,92, plop(2.13)

and Ju is the (p+l)xl standard basis vector whose elements are all zero

except for its first which Is one. The required parameter identification is

then obtained upon solving this system of p+1 linear equations in the p+1

unknowns. Conceptually, this solution may be effected by performing the

following computation

- lb. 12 r 4 (2.14)

in which the normalizing coefficient bo is selected so that the first

component of A is one as required in expression (2.13). In this solution

procedure, we are tacitly assuming the invertibility of the autocorrelation

matrix R. If matrix R is singular, however, this almost always implies that

the underlying time series is an autoregressive prooess of order less than p.

In this case, it will be necessary to decrease the order until R becomes

invertible.

Upon examination of expression (2.11), it is seen that the resultant

AR(p) model parameters are totally dependent on the first p+l given

autocorrelation lags rx(O), rx(1), ... rz(p). Although the associated model

will have an autocorrelation behavior which perfectly matches these first p+1

lags, it may provide a very poor representation for the rewaining given

autocorrelation lags rx(p+l), rx(p+2), •••, rz(s) (which were not used in the

parameter identifioation) . In order to provide a represention for these

higher lags by the procedure here taken, it may be necessary to increase the

AR model order to s (i.e., p-s). In many applications, however, the

underlying goal will be that of providing an AR model of relatively low order

(i.e., p((s) which will adequately represeat the entire sot of

astocorrelation lags. A procedure for achieving this objective will be

shortly given. Before considering this most relevant objective, let us first

outline an elegant method for solving the system of linear equations (2.11).
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LRVYNSaN-DOUIDN ALGORrIE: Although the solution procedure as embodied

in expression (2.14) will result in the desired parameter identification, the

evaluation of 2 - 1 will entail on the order of p$ multiplication and addition

calculations (i.e.. o(p3)) if standard procedures such as Gaussian

elimination are used. Fortunately, it is possible to take advantage of the

fact that the autocorrelation matrix R is both complex conjugate symmetric

(i.e.. R(ij) - l(j.i)) and Tooplitz (i.e., R(i,j) - '(i+Ij+I)) so as to

effet a computationally efficient solution procedure. This method was

developed by Levinson and is commonly referred to as the Levinson-Durbin

algorithm [24,[431. In this approach, one solves the linear system of

equations (2.11) as the AR order parameter p is sequenced through the values

1 2& 3& ... , Pm whore pm designates some as yet unknown maximm AR order.

In this sequencing scheme, Levinson showed that the parameters for the kth

order AR model solution which are designated by
a(k), a2 (k), ..., a balk) (2.15)

are related to the (k-1)th order AR model solution as outlined in Table

2.1. A brief description of this systematic algorithm will now be

given.

Step 1 al. r 1 (J)/rz(0) (2.16a)
Nbo 1  2 . [1 - Is,11l) 12 1 rx(O)  (2.16b)

Step 2 For k - 2, 3, 4,

k-1

ak(k) =- rx(k) + I anr - ) rz(k-) /bo(k-l)1 2  (2.17a)

ai (k) -i k)ai 1 j i k-1 (2.17b)

Wb k 2 (k) 2((k-1)1
No r  - (1 - lak I 11bok(12.17c

Table 2.1. Levinson-Durbin Algorithm for
Recursively Solving Expression (12.11)
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If one were to solve the linear system of equations (2.11) for the order

choice p - 1, it would be found that the required first order AR parameters

(with superscript (1) appended) are given in step 1 of Table 2.1. Upon

setting p - 2 in expression (2.11), a moderate mount of algebraic

manipulation will reveal the validity of the solution as liven in Step 2 of

Table 2.1 with k - 2 (with superscript (2) appended). Levinson proved that

in following the systematic procedure of Table 2.1. the solutions to the

Yule-Walker equation (2.11) for order selections

p - 1. 2, 3. ... are sequentially obtained. Moreover, the nmber of

multiplication (and addition) computations required in generating the kth AR

order parameters from the k-1st Ai order parameters (i.e.. Step 2) is seen to

be k. Thus, the computational complexity of the Leviason-Durbin algorithm

for generating a pth order AR model (and all lower order models as a

byproduct) is found to be o(p2). This is a considerable savings over the

computational complexity of o(p3) required in solving expression (2.11) using

standard techniques.

The Levinson-Durbin algorithm provides not only a computationally

efficient method for generating the AR parameters, but, it also yields an

effective AR model order determination procedure. Specifically, lot it be

assumed that the autocorrelation lags used in expression (2.11) correspond to

an A(p) process. If the Levinson-Durbin algorithm were applied to this

autocorrelation lag information, by the very nature of this procedure, the A

process parameters would be perfectly identified at the pth iteration (i.e.,

S(p) k k n 1, 2 p and No ( 1 bo21). Moreover, if this(k)
recursion were continued beyond p. it would be found that ai = ai for 1

i jp, ai (k) 0 for p+l j i jk, and, bo(k) -
2  b . This isba. direct

consequence of the fact that ap+l(P+l) must be zero as is evident from

expression (2.17a). From these observations, it is therefore apparent that

the nonohanging of the par-meters bo (k) 2 provides a means for order

determine tion.

When the autocorrelation lags used do not correspond to an A process.
(k) 2

there will be no value of k for which lb, I assues a constant value
(k)thereafter. Since the specific high order coefficients ak will always

have a magnitude which never exceeds one [5] and [14J, however, it is

apparent from expression (2.17c) that lbo (k)12  bo(k-1)12 for all k . 1.
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Thus, the parameters bO(k) 12 form a monotonically noninoreasing sequence and

this factor can be used in model order determination. In particular, the

parmeter No(k)1 2 may be identified with a 'prediction error' associated

with a kth order linear predictor. Once this prediction error becomes

satisfactorily small, the associated AR(p) model will form an acceptably good

alznaoximin to the given autocorrelation sequence (e.g., see ref. [311).

The meaning of 'satisfactorily mall' is subjective and will depend on the
particular application being considered and empirically obtained experience.

7he parameters ak(k) for k - 1. 2. 3. ... are also referred to as

'reflection coefficients' and are often denoted by ek = ak(k). These

reflection coefficients have the property that for the truncated sequence

rx(O), rz(l), .... rz(p) to be a valid segment of an antocorrelation

sequence, it is necessary and sufficient that Ik J 1 for k - 1, 2, ... , p.

Moreover, the transfer function

p
Ap(z) I an z-n (2.18)

n-0

associated with the solution to expression (2.11) will have all of its roots
on or inside the unit circle if and only if the lok1 11 fork

onork 1fok 1,2o .. p.

It is noteworthy that the system of equations (2.11) also arise when

solving the optimum one-step predictor problem, or, when using the maximum

entropy principle [31]. In the one-step predictor problem, it is desired to

select the p predictor parameters ak so that the prediction

p

z(n) I- ak x(n-k) (2.19)

k-i

best approximates z(n) in the sense of minimizing the mean squared prediction

error ( II(n)-x(n)12). One may readily show that the optimm prediction

parameters are found by solving expression (2.11) in which lbo 12 plays the
role of the minimum mean squared prediction error. On the other hand, when

applying the maximum entropy principle, it is tacitly assumed that the time

series (z(n)) is a zero mean, Gaussian process. The objective is to then

find a power spectral density function Sz(eJ*) which Vill maximize the

entropy measure
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f 3 [Sx(oJ*) J do (2.20)

-X

subject to the constraint that this fuction will be consistent with the

given set of p+1 antooorrelation lags rx(0), rx(1). ... rx(p) through the

Fourier transform pair relationship (1.3). It is readily shown that the

maximizing power spectral density funotion is an AR process of order p whose

parameters are given by expression (2.11).

ARMA Time Series

ho time series x(n)) is said to be an antoregressive-oving average

(AREA) process of order (pq) if it is generated (or can be modeled)

according to the recursive relationship

p q
x(n) + I ak x(n-k) - I bk e(n-k) (2.21)

k-l kO

in which the excitation sequence (a(n)) is the aforementioned normalized

white noise process. Our task is to then determine values for the ak and bk

parameters of this model which are most oompatable with the given

antocorrelation lags (2.1). The mechanism for measuring this compatability

will be the Yule-Walker equations (2.3) which characterize the above ARM

model. Upon examination of these equations, it is seen that the ARME

parmeters appear in a nonlinear fashion through the unit-impulse response

h(n). If the best least squares modeling is desired, it is then fond that

the generation of the optimal ak , bk parameters involves the least mean

square solution of the highly nonlinear Yule-Walker equations. This will

almost always necessitate the use of computationally burdensome nonlinear

programming algorithms with the attendant difficulty of initial parameter

value selection, and, the possibilities of convergence to a local extreme or

even nonoonvergence.

A considerable easing in computational requirements may be achieved if

we allow ourselves the luxury of evaluating the ak and bk parameters

separately. By using this approach, it will be possible to provide for a

linear solution procedure for the ak parameters. Althonsh this approach will
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be suboptimal in nature, it often provides for a near optimal modeling. The

mechanism for this separate parameter evaluation is obtained upon examining

the Yule-Walker equations (2.3) which characterizes the ARMA model (2.21).

If this model is take to be causal, it follows that the Yule-Walker equations

assume a particularly simple form for indices n > q, that is

p
I ak rx(n-k) - 0 for n I q+1 (2.22)
k-0

We shall refer to this particular subset of the Yule-Walker equations as the

extended Yule-Walker equations. The obvious attractiveness of these

equations lies in the fact that they are linear in the ak parameters.

To determine the ak autoregressive parameters which are most compatable

with the given set of autocorrelation lags (2.21). we could adopt the

approach that characterized extended Yule-Walker equation AR and ARIA

modeling methods up to as recently as three years ago (e.g., see refs

[26],[28],[351.[38]). This would entail evaluating the first p extended

Yule-Walker equations (i.e., q+1 j n j q+p) and then solving the resultant

system of p linear equations in the p auto-regressive parameters. Although

this approach is computationally attractive, it suffers from the obvious

drawback that only a subset of the given autocorrelation lags (2.1) are being

used in fixing the ak parameters (i.e., rx(n) for q-p ( n j q+p). To achieve

a ARNA model which better represents the entire set of autocorrelation lags

(2.1). it is clearly beneficial to use move than the minimal number (i.e., p)

of extended Yule-Walker equation evaluations. The ak parameters which yield

a least squares fit to this overdetermined set of linoar equations is then

found using a straightforward procedure to be shortly given.

This overdetermined extended Yule-Walker equation approach to ARNA

spectral estimation was proposed by the author in 1979 [151. From a

historical perspective, it is to be noted that the idea of using an extended

set of model evaluations forms a fundamental concept in system parameter

estimation theory (e.S., see refs. [451,[$9]). Moreover, the approach here

taken can be interpreted as being a generalized application of the Prosy

procedure in which the autocorrelation lags play the role of the data. With

these thoughts in mind, there exists a rich source of evidence Justifying the

use of an overdetermined set of
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extended Yule-Walker equations for estimating the ARIA model's autoregressive

parameters.

In this overdetermined modeling approach, the extended Yule-Walker

equations (2.22) are evaluated for t distinct values of n satisfying n I q+1.

To effect the desired overdeterminacy, the integer t has to be selected to at

least equal p+l although larger values will typically yield better model

representations. To illustrate this overdetermined approach, let-us consider

the first t extended Yule-Walker equations (2.22) indexed by q+1 j n j q+t.

This particular Yule-Walker equation evaluation gives rise to the following

overdeternined system of t linear equations in the p autoregressive parameter

unknownsl

rz(q+l) rx(q) .. rz(qr-p+l) 1 0

al

rz(q+2) rz(q+l) .. rz(qrp+2) a2  0

* . .. . - .(2.23 a)

. . ... Lap

rz(q+t) rz(q+t-l) .. rz(q-p+t) 0 L

or more compactly as

Illm A (2.23b)

In this latter expression, ,a denotes the txl zero vector. RI is the tx(p+l)

ARiM autocorrelation matrix with Toeplitz type structure having elements

R1 (ij) - rz(q+l+i-J) 1 S. i j. t (2.24)

1 S.Jjp+1

lIn certain applications, it may be desirable to use an other than
contiguous set of extended Yule-Walker equation evaluations.
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and JL is the (p+l) autorosrommsivo parmotor vector whose first component is

required to be one

A = 11, al. a2 * *-., ap]' (2.25)

Examination of relationships (2.23) reveals that the ARUA model's

antorosrossive parameters are obtained upon solving this system of t
ovordsterniined (assuming t > p) linear equations. Due to the ovordotermined

nature of these equation. the fundamental question as to whther a solution

exists naturally arises. The following theorem provides an aswer to this

question and is a direct result of the Yule-Walker equations which governs

AREA processes.

Theorem 2.1: If the autocorrelation lag entires used in matrix Rl of

expression (2.23) correspond to those of an ARMA (pl,ql) process, then

the rank of Rj is PL provided that p I pl q I ql-

With this theorem in mind, the existence of a solution to relationship (2.23)

will be dependent on the rank of the autocorrelation matrix Rj. We shall now

consider separately the cases in which R1 has full rank and less than full

rank.

Rank CR1 ] i p: When the rank of matrix R1 has less than full rank, a

nontrival autoregressive parameteric vector solution & will be assured. An

interesting algebraic characterization of this solution may be obtained upon

premultiplying both sides of relationship (2.23) by the complex conjuage

transpose of Ri as denoted by R to yield

RiRl a - & (2.26)

Upon examination of this expression, it is clear that the required

autoregressive parameter vector may be also identified with a properly

normalized eigenvector (i.e., its first component is one) associated with a

zero eisenvalue of the (p+l)x(p+l) matrix RfRl. As such, we may then use

standard eigenvector-eigenvalue routines when finding the required AREM model

autoregressive parameters.

Rank [R1 ] - p+l: In many cases of interest, however, it will be found

that the autocorrelation matrix Rl will have full rank. This will ocur

whenever the autocorrelation lag entries used are associated with either a
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nonrational random time series, an MA process, or, with a higher order ARMA

rational process. Since RI has full rank, there then will not exist a

nontrivial solution to relationship (2.23). Nonetheless, we still wish to

determine an ARIA model which 'best fits' these overdetermined extended

Yule-Walker equations. Namely, we seek a nonzero autoregressive parameter

vector A so that RUi most closely equals the required ideal zero vector as

specified in (2.23). Although a variety of procedures may be used for

accomplishing this selection, the following two approaches typify many

spectral estimation algorithms.

(i) In the first selection procedure, it is desired to find an

autoregressive parameter vector lying on the unit hypersphere which will

minimize the Euclidean norm of Rja. This entails solving the following

contrained optimization problem

Using standard Lagrange multiplier concepts, it is readily shown that the

solution to this optimization problem is obtained by selecting that

orthonormal eigenvector of the positive definite lermetian matrix RI*

associated with its minim eigenvalue. If xI corresponds to that

ortonormal eigenvector (i.e.. - kkk with 4 J %k+l and xzk - 1),

the required autoregressive parameter vector with first component of one if

obtained by the normalization.

1

Ao - J (2.27)
xl(l)

where 11(l) denotes the first cmponeant of gq. This autoregressive parameter

vector selection procedure characterizes many spectral algorithms which are

varients of the Pisareako method (55] and is generally not suitable for an

efficient computational solution.

(ii) In the second seleetion procedure, we wish to minimize the

Euclidean norm of Il1 over all (p+l)xl vectors A with first componnts equal

to one, that is
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Appealing to the Lagrange multiplier approach again, it is found that the

solution to this constrained optimization problem is given by solving the

following linear system of equations

R 0 Mg (2.28)

where the noralizing constant a is selected so that the first component of

_o is onw.

In using either of the above two procedures, we are seeking to best

satisfy theoretical relationship (2.23) in the least squares sense subject to

appropriate constraintsl. The particular application at hand

dictates which autoregressive parameter vector selection procedure provides

the best performance. It has been the author's experience that the selection

(2.27) has often provided reasonable modeling (also see ref. [12]). In terms

of computational efficiency, however, the linear selection (2.28) enjoys a

clear superiority due to the availability of efficient adaptive algorithms as

outlined in Section 1. With this in mind, we shall mainly focus our

attention on the linear selection (2.28).

In summary, the ARKA(pq) model associated with a given set of

autoregressive lags entails an examination of the matrix R1. If this matrix

is not of full rank, the required exact autoregressive parameter vector will

be given by solving expression (2.26). On the other hand, when the matrix

has full rank, an appropriate autoregressive parameter vector may be achieved

by solving either expression (2.27) or (2.28). It is important to appreciate

the fact that these ARNA results are applicable to the special AR process in

which case we simply enter q-O when forming the ARIA autocorrelation matrix

Rl.

lIt is possible to generalize the constraints to be a quadratic surface
(giving rise to a generalized oigenvector solution) or a hyperplane,
respectively (101.
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Moving Average Parameters

In order to complete the ARM& modeling, it is necessary to deteaisae the

model's associated moving average parameters. There are a variety of

procedures for achieving this objective. We shall present two such

procedures of which the first is the ose most often foud in the literature

while the second possesses a desirable off iciet compatatioal

implementation.

(i) In the first procedure, one conceptually applies the time series

(n(a)) to the pth order aourecursive filter with transfer function Ap(z)
whose coefficients correspond to the autoregressive parameters obtained upon

solving either ezpressios (2.26), (2.27) or (2.28). This filtering produces

the so-called riuline series as specified by

p

s(n) - amx(n-m) (2.29)

E.0

This filtering causes the residual tine series to be a moving average process

of order q with power spectral density function JBq(e ) J)12 as is made evident

from Figure 2.2. This of course presumes that (z(n)) corresponds to an ARME

processor of order (pq) or less. A simple analysis indicates that the

length 2q+1 autocorrelation sequence of this residual time series may be

computed according to

I I akam r1 (n+&-k) -qjnjq

re(n) - (2.30)
0 otherwise

Using these EA(q) autocorrelation lags, it follows from expression (2.5) that

the unknown bk parameters must be such that

q

re(n) - bkbk- -qanjq (2.31)

k-O

A spectral factorization along the lines mentioned in this sections EA time

series subsection will then yield the desired bk parmeters.
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a (a) Bq(sZ) z(n) pza(n

Figure 2.2. Generation of residual time series.

(ii) If computational requirements are of vital concern, the technique

to be now outlined is particularly efficient (15],[16]. It utilizes the

Fourier transform of the causal part of the autocorrelation sequence

- ) rx(n)e-JR (2.32)

n-i

The uderlying power spectral density function may be directly determined

from this Fourier transform according to

Sz(eJ) - rx(O) + 2Re(D(eJ)) (2.33)

A comparison of this expression with relationship (1.13) reveals that the

transform D(eJi) must be of the form

Wcie-J*+c 2e-J
2% + ... + cp-JPW

D(eiW) -

l+ale-jW + ... + ape-jPo

C(eju)
= -(2.34)

Ap(eow)

where we are tacitly assuming that the moving average order is not larger

than the autoregressive order (i.e., q j p).

To determine the required an coefficients in expression (2.34), we will

first compute the first a impulse response elements of the filter R(esJ) =

1/Ap(eiJ). This will entail using the following relationship

p
h(n) - - akh(n-k) 1 5n s (2.35)

k-l
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in which h(O) 1 and h(n) - 0 for n C 0 are used to initiate the recursion.

We next use the tine domain equivalency of relationship (2.34) to conclude

that

h(0) 0 0 x 0 r(1)

h(1) h(O) 0 . . 0 0 2  r1 (2)

* . . = . (2.36a)

h(p-1) h(p-2) . . . . h(O) a

* .

h(s) h(s-l) . . . . h(s-p+1) rz(S)

or

HN . (2.36b)

In general, the overdetermined system of equations (2.36) will not have

a solution unless the autocorrelation elements rx(n) are associated with an

ARM process of order (pp) or lower. Assusing this not to be the case, we

could select the vector g so as to provide a least squares solution to

expression (2.36). This would take the form of solving the consistent system

of linear equations

a [-Nzjle.' (2.37)

In order to achieve the aforementioned efficient computational

algorithm, the parameter s may be taken to be p which readers the following

straightforward method for evaluating the an

n-1

an - akrz(n-k) I j n j p (2.38)

k-O

This is basically the approach taken in references [151 and [161. In using

expression (2.38) for evaluating the on, we are trading off performance for
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computational off iciency. It has boon the author's experienc, that the

spectral estimates achieved upon using the least squares fit (2.37) do not

typically provide a superior performance to those given by the simpler

relationship (2.38). In any case, once the on parameters have been

determined, the Fourier transform (2.34) is used in expression (2.33) to

effect the required power spectral density model. Moreover, if it is desired

to evaluate the bk parameters, we can use the identity

Iq(e*) 12 _ Ap(o jW) U(eOj)+ Xp(eJ")C(eJ)+rx(O) IAp(eJ#) 12 (2.39)

and a spectral factorization to achieve this objective.

In this section, we have outlined convenient procedures for generating

MA, AR and ARNA spectral models when perfect antocorrelation lag information

is available. The principle steps of these procedures are sumnarized in

Table 2.2. Although these results are of primarily theoretical interest, we

will subsequently adapt them to evolve effective rational spectral estimation

methods for the more practical case where only raw time series observations

are used in the modeling.
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NA Model

q

5 1 (o i) I w(n) r,(n) *-Jin (1.6)

AR Model

0.) Form the (p+1)x(p+1) AR autocorrelation, matrix R using expression
(2.12)

(ii) Solve 1 ik - lb 0 11 (2.11)

whore parameter bo is selected so that the first component of &a is
Onse

( i i i ) S x ( eJ * ) -o 1 +1 2 . .. a e P '

ARM& Model

(i) Form the tz(p+1) ARM& autocorrelation, matrix Rj using expression
(2.24)

(ii) (a) If Rank (Ri * i) ( p+1 then solve

Rien 1 A - .2(2.23)

(b) If Rank ( 1 1 C1 1 ) - p+1 then either solve

RiR0 ,sj (2.28)

where a is selected so that first component of £j is one.
or

use the minimum eigenvalue-eigenrector yielding selection
(2.27).

p p
(i)r,(n) I aji' r.(n+mr-k) Oin.(q (2.32)

k-0 u.O

q
rno-jun

JO r5 (n
(iv) Sx(eiS + nin-q~ a0-

Table 2.2. Rational spectral model techniques employing

exact autocorrelation lag information.
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III. Sinusoids in White Noise Example

The procedure as developed in the preceding section is applicable to the

task of generating rational models for the general class of wido-sonse

stationary time series. In order to demonstrate the relative effectiveness

of MA. AR. and ARME modeling, the classioal problem of the detection and

frequency identification of the sinusoids in white noise case will now be

considered. Although this does represent a very narrow application of

rational spectral estimation techniques, it provides a meaningful basis for

understanding the relative performance capabilities of EA, A, ARM models.

In particular, the tins series being now exmined is taken to be composed of

the sm of a real sinusoids in additive noise as specified by

X(n) Ak sin [l2fkn + +k] + w(n)

k-l

in which the ek are independent, uniformly distributed random variables on

the interval [-n,w] and w(n) is a zero mean, variance a,2 white noise process.

It is recalled that the problem of detecting sinusoids in noise originally

gave rise to spectral estimation theory. The periodogram method was

developed for this very purpose by Schuster in 1898 (58].
The task at hand is to generate EA, AR, and, ARL models from the

autocorrelation values associated with this time series using the procedures

outlined in the previous section. It is a simple matter to show that the

autocorrelation sequence oharacterizing tine series (3.1) is given by

2
rz(n) 0.5 Ak cos [2xfknl + 28(n) (3.2)

k-1

in which 8(n) denotes the uit-impule (Kronooker delta) sequence. The power

spectral density function associated with this process is composed of 2m
2

dirae dolta impulses of amplitude 0.5 Ak located at frequencies _tfk riding on

top of a constant value a2. As such, this discontinuous power spectral

density fuction may not be associated with a finite order LA, AR, or ARMA

process.
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Although the autocorrelation sequence (3.2) is not compatable with a

finite order ARMA model, it is readily shown that this sequence will satisfy

the following homogeneous relationships

2a

ak rx(n-k) - 0 for a ) 2a (3.3)

k-O

where ao - 1. The ah parameters required in this expression are obtained by

equating coefficients of the following polynomial equivalency

2.

A a(z) a an z-n

n-O

- iT [1-2 z-1 cos(2Nfk) + z-2] (3.4)
k-i

where the zero*s of this polynomial (i.e., e±Jlfk) are identified with the

frequencies of the time series' sinusoids (e.g., see refs. (101,[321,[551).

Upon comparison of relationships (3.3) and (2.22). it might be

incorrectly infered that the antocorrelation sequence (3.2) would be

associated with an ARMA process of order (a.2m). Upon examination of the

Yule-Valker equations for indicies 0 j n j 2m, however, it will be found that

an exact correspondence does not result. This simply reflects the fact that

the time series (3.1) does not arise from exciting a linear ARK operator

with white noise. Nonetheless, due to the identical forms of equations

(2.22) and (3.3), we may still use the AREA modeling autoregressive parameter

procedure as outlined in Section I to identify the 2m parameters ak . These

parameters would be then in turn inserted into relationship (3.4) to identify
the frequency7 parIIeter8 fk Upon factorization of the polynoial kln(z).
This spectral behavior can be conveniently displayed in a plot of

Jl/Alm~oJ40) versus a.

Ones the fk frequency parameters have been determined, the associated Ak

amplitude parameters may be obtained upon evaluating expression (3.2) over

any set of a or more indices satisfying n 1 1. With this in mind, lot us

evaluate this expression for the contiguous indices 1 j n I v where the

______ ~32 _ _ _ _ _ K
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integer v a m. This is found to yield the folloving overdetermined (if vn)

system of consistent linear equations in the Ak wknowns

2
rx(1) cos(2xfl) oos(2xf2) .. oos(2xf3 ) A1/2

2
r,(2) Oos(4wfl) oos(4f2) .. oos(4wfm) A2/2

m * (3.5)

2
* . ~A/2

r1 (v) cos(2vwfl) oos(2vxf2) ... cos(2xvf,)
or equivalently as

T = C?(3.6)

where 2 is the so-called nzl power vector with elements k 2- If the integer

parameter v is selected to be larger than or equal to a. the least square

approximate solution to the overdetermining equations (3.6) is given by

p- [cc] 1 C ' Z (3.7)

where C' designates the transpose of matrix C. In the case of perfact

autocorrelation knowledge, we normally set v = m thereby giving the solution

-- C 1 . In the more practical case in which only raw time series

observations are given for the estimate, however, a desirable degree of

parameter moothing is achieved by selecting v > a.

Although the sinusoids in white noise time series (3.1) is not

compatable with an AR model, AR models have also been successfully employed

in analyzing such time series. Depending on the underlying signal to noise

ratios

22

the desired detection and frequency estimation will require that the AZ order

parameter p be made siganliatly larger than 2m. Variants of the Pisareako

method [551, and, the SVD approach of Tufts and Kusaresan [421,[611 typically

prodse satisfactory performance on the sinusoids in white noise case. As we

will illustrate in Section VIII, the approach taken in this paper will also
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produce exceptional performance when an SVD adaption of the ARMA modeling

method herein presented is made.

Alternate Method

It is possible to apply the concept of using an overdetermined system of

model evaluations for achieving high quality alternative estimates for the

frequency parameters appearing in expression (3.1). This will make use of

the observation that homogeneous relationship (3.3) holds for all values of n

provided that there is no white noise present (i.e., a2 - 0). Under this

restriction, an evaluation of expression (3.2) with a2 - 0 over the indices

-t + 2p j n j t (in which p - 2m) is feud to result in the following

symetrical relationship

r,(-t+p) rx(-t+p-1) . • • rx(-t) 1 0

rx (-t+p+1) rx(-t+p) • • . rx (-t+l) al 0

= (3.8a)

•ap A

C C

rx(t) rx(t-1) . . . rx(t-p) 0

or

Rs A - e (3.8b)

in which t is selected so that t ) 3./2 thereby ensuring an overdetermined

system of homogeneous relationships.

If the autocorrelation lag entries of expression (3.8) correspond to

(3.2) with a2 - 0, it then follows that the overdetermined system of

equations (3.8) will have a unique solution for the ak coefficients. This

solution can then be incorporated into equation (3.4) to obtain estimates for

the frequency fk parameters. In the additive noise case a2 0 0, however,

this system of equations will generally not have a solution. Since the e2
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term appears in only p+l out of the (2t-p+l)z(p+l) entries of matrix Rs

(i.e.. the rx(0) entries), it can be argued that so long as t>)p, the effect

of the additive noise will be minimal. Based on this prmise. it is natural

to then seek a vector & such that this inconsistent system of linear

equations is best satisfied in a least squares sense. The required least

squares solution is then given by solving the system of equations

Rs* W Rs & - a 9-1 (3.9)

in which a is a normalizing scalar selected to ensure that the first

component of a is one. The nonnegative diagonal matrix W is typically

selected to be equal to the identity matrix. As we will see in Section VIII,

the solutions obtained by using expression (3.9) often provide exceptional

estimates so long as t>>p. A paper in preparation will further refine this

now approach.

Numerical ExaHnlo

In order to illustrate the effectiveness of the three rational models in

resolving sinusoids embedded in white noise, we shall now consider the

specific time series

x(n) - sin(0.4xn) + sil(0.43=n) + w(n) (3.10)

The white noise series (w(n)) will be taken to have a variance of 0.5 thereby

creating a zero dB sisnal-to-noise ratio (SNR) environment. According to

relationship (3.2), the autocorrelation sequence associated with this time

series is specified by

rx(n) - 0.5 cos(O.4=n) + 0.5 cos(O.43wn) + 0.56(n) (3.11)

We shall now use these antocorrelation lags along with the concepts developed

in Section II to generate appropriate MA, AR and ARNA models. A brief

discussion of the resultant modeling performances in this idealistic

situation will now be given.

NA Models: When using the classical spectral modeling expression

q

Sx(oJe) 1 r,(n) e-J to (3.12)
n--q

A

'I'I
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we are in effect invoking a MK(q) model. Plots of this expression with

entries (3.11) for model order selections of q - 32 and q - 64 are shown in

Figure 3.1 over the range of normalized frequencies 0 j f J 0.5. From these

results, it is apparent that a resolution of the two equal amplitude

sinusoids was not achieved for a thirty second order MA model, but, was

achieved for a sixty fourth order NA model. Thus, an artificially high order

Ma model was required in order to resolve the two sinusoids when exact

autooorrelation lags were used. This example nicely demonstrates the

distortions which can result when invoking a MA model if the uderlying

assumption that rx(n) - 0 for n > q thereby implied is not satisfied (or

approximately satisfied). Clearly, the nondamped nature of the

autocorrelation sequence (3.2) behavior indicates that the ML modeling of a

time series composed of sinusoids in white noise can be inappropriate unless

a sufficiently large selection of the MA model order q is made.

AR Models: We next used the same autocorrelation lag information (3.11)

to generate AR models of order p - 20 and p - 24 using expression (2.11).

The resultant spectral estimates I/IAp(eJ*)1 2 are shown in Figure 3.2s and b

for these two model order choices. It is apparent that the twentieth order

model was unable to resolve the two sinusoids while the twenty-fourth was

just able to achieve the resolution. Since the specific autocorrelation lags

rx(n) for 0 j n j p were required for generating an AR(p) model, it is

apparent that fewer autocorrelation lags were needed to resolve the two

sinusoids when using an AR(24) model in comparison to the 3A model. This

simply gives credance to the previously made suggestion that AR models

provide a more effective instrument for representing peak like spectra than

are 3A models.

In order to illustrate the effect of using more than the minimal number

of extended Yule-Walker equations (i.e.,t > p) when generating an A model,

we next used the ARMN modeling equations (2.23) with parameters p-10, q-0,

and t-100. The AR(10) model which results upon solving equations (2.23) for

this choice of order parameters has a spectral behavior as depicted in Figure

3.2.. This AR(10) spectral estimate is seen to be significantly better than

that achieved by the higher order AR(24) estimate. Clearly, the process of

using 100 (i.e.. t-100) extended Yule-Walker equation evaluations instead of

the minimal number 10 has produced this significant improvement. This

improvement is due to the fact that only the first four of the one hundred



extended Yule-Walker equation evaluation* are in error due to the imposition

of an improper AR model (see equation (3.3)). By increasing t beyond p, the

effect has been to dilute the negative impact of the erroneous first four

Yule-Walker equations on the model parameters (i.e., four improper equations

and 96 appropriate equations). The reader is urged to fully understand the

implioations of this result in a more broadly based context.

ARM& Model: We next used the given autocorrelation lag information

(3.11) to generate an AREA model of order p - 4 by appealing to expression

(2.23). We here select the variable t to be equal to its minimal value of

four, and, in accordance with this seotion's discussion take q - 4. The

resultant AREA based spectral model 1/A 4 (eJw)1 2 without the MA component is

plotted in Figure 3.3. The two sinusoids are nicely resolved and when the

fourth order polynomial A4 (eJ*) was factored, it was found to have its four

roots on the unit circle at e*.J2ufk for k - 1,2 in which fl - 0.2 and f 2 
=

0.215. This should not be surprising since it was previously shown in this

section that an ARM tjpe model is perfectly compatible with a sinusoids in

white noise time series (MA and AR models are not compatible). It is

noteworthy that only the autocorrelation lags rx(n) for 1 j n j 8 were

required in generating the spectral model depicted in Figure 3.3.

Alternative Method: As a final procedure, we used the alternative

method as represented by relationship (3.9) in which the parameters were

taken to be p-l0 and t-50. Using these parameters along with the theoretical

autocorrelation lag entries (3.11) a plot of the resultant estimate

1/IAjO(eJw)I2 is shown in Figure 3.4. The two sinusoids are resolved with

well defined peaks, and, the spectral estimates are superior to those

achieved by the MA and AR model results but inferior to the ARM& model.
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(a) MA(32)

'0.00 0'.10 a.20 0.-30 0'-40 '0-60

C? (b) MA(64)

a,%

'II

Fig. 3.1 Moving average (MA) spectral
models using expression (1.6)
with w(n) - 1 and exact auto-
correlation lags (a) q *32,
(b) q =64.
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a (a) AR(20)
I.. t=20

6.0 -10 06.20 d.30 0.-40 '5

(b) AR(24)

t= 24

u0

0

* (c) AR(1O)

t=100

0.00 if-to W.26 0.26o 0.46 o.Ks

Fig. 3.2 Autoregressive (AR) spectral
models usina expression (2.11)
with exact autocorrelation lags
(a) p-t=20, (b) p-t-24,
(c) p-10, t-100.
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(a) ARI4A (4,4)
t

0.4W6,0 d-20 0:.30 0.40 R.50

Fig. 3.3 Autoregressive-moving average
(ARMA) spectral models using
expression (2.23) with exact
autocorrelation lags and p=t=4.
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a

C-

'0.00 2~o0.Z FS3 d-40 '0.50

Fig. 3.4 Alternative method with
p = 10 and t =50.
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IV. NA Modeling - Time Series Observations

From a practical viewpoint, the situation in which exact autocorrelation

lag values are given for effecting a spectral estimate almost never arises.

More typically, the required spectral estimate is to be generated from a

finite set of contiguous time series observations as represented by

x(1), x(2)....° x(N) (4.1)

In this section, we will be concerned with achieving MA spectral estimates

from this observation set. The methods to be presented for this purpose are

largely influonced by the theoretical developments found in Section II.

There exist two primary MA spectral estimation procedures that have

found favor mong users. They are indirect methods based on autocor-relation

estimates such as proposed by Blackman and Tukey [81, and, direct methods

based on the Fourier transform of the time series observations and widely

know as the periodogrm (or the method of averaged periodograms due to Welch

[641). As we will shortly see, the periodogram is a special case of the

Blackman-Tukey approach.

Blackman-Tukev Aunroach

In the Blackan-Tukey method, one first obtains autocorrelation

estimates Ax(n) from the given observation set (4.1). These autocorrelation

estimates are then inserted into expression (1.2) to effect the required

spectral estimate. For a variety of reasons, it is often beneficial to

introduce a windowing sequence w(n) to achieve the windowed NA spectral

estimate of order q

q
SleJO) I w(n) xl(n)e-Jit (4.2)

n--q

Considerations to be made in selecting the window sequence are well

docmented and the reader is referred to references (331.[50],[71. Two of

the more popular selections are the rectangular window (i.e., w(n) - 1) and

the Bartlett triangle window (i.e.. w(n) - (l-Inj)/(q+l)).

The standard unbiased and biased autocorrelation estimates are mong the

most popular candidates to be used in the spectral estimate (4.2) (e.g., see

ref. [331 for a detailed development). The unbiased estimate achieves the

required autooorrelation lag estimate according to
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N

rx(n) " jx(k+n)7(k) -q. n j q (4.3)

k-i

where the convention of setting to zero any ter x(n) in the summand for

which n a [1,N] is adopted. It is a simple matter to show that I(kx(n)) -

r,(n) thereby establishing the unbiased nature of estimate (4.3). Moreover,

this unbiased estimate is also consistent so long as the order parmeter q is

finite.

Notwithstanding the obviously attractive statistical properties

possessed by the unbiased estimate (4.3), a number of prominent statisticians

have proposed using the standard biased estimate (e.g., see refs.

[33] ,[52] .[53].

N

rR - N 2x(k+a)iZ(k) -q j a j. q (4.4)

k-1

We again adhere to the convention of setting to zero any term x(n) in the

sumaad for which n a [1,N]. The justification for using the biased estimate

is that it is more stable statistically. It must be noted, however, that the

relative advantages of unbiased vs. biased estimators remains an unsettled

issue. With this in mind, the user is cautioned to base his ultimate

selection on the particular application being considered. This will

undoubtably entail a great deal of empirically based experimentation on the

users part.

In the periodogram method, the required spectral estimate is given by

the expression

Iz(OJW) -( I(.JU)t (4.5)

whore TN(eJO) is the Fosrier transform of the time series observations, that

is
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N-1

XN(OJe) - z(n+i)e-Ju (4.6)

n-C

Te here use the subscript N on IN(eJO) to explicitly denote its dependency on

the observation length parmeter. It is readily shown that the periodogram

is identical to the Blackman-Tukey approach when the biased estimates (4.4)

are used in expression (4.2) with q - N-1 and w(n) - 1.

The primary advantage in using the Periodogram approach is computational

in nature. Specifically, the values of the periodogram at the N discrete set

of uniformly spaced radian frequencies ok - 2xk/N for

0 j k I N-1 is seen to entail evaluation of the entities

N-1

1 Zwk 1 2xkn

WCe N- = x(n+l)e -  N 0 k j N-1 (4.7)
n-0

These evaluations are readily carried out by use of the N point fast Fourier

transform (FIT) algorithm (e.g. see refs. [50],[571). With the FIT

algorithm, the N quantities (4.7) may be computed in which the required

number of complex additions and multiplications is on the order of N log2 N-

The computational savings accrued in using the FFT algorithm !or spectral

estimates is considerable when it is realized that a direct evaluation of

expression (4.7) is seen to entail N2 complex additions and multiplioations.

Due to the computational savings accrued in using the FFT implementation of

the periodogrm, spectral estimates of long data sequences became feasible

with the FFTs development.

Although the FF1 algorithm offers a computationally effijient means for

numerically evaluating the periodogrm (4.5), it possesses a potentially

serious drawback. Specifically, as Just suggested, this FF1 implementation

provides a sampled version of the periodogram in which the frequency samples

are separated by 2x/N radians. For many applications of interest, this

sampling may be too coarse in that the detailed continuous frequency behavior

Of the periodogrsm (4.5) may be somewhat obscured through the sampling

process. h example of this will be given in Section VIII. In order to

alleviate this potential difficulty, we may apply the concept of AM

2nddia. This simply entails the Appending of L zeroes to the given set of

time series observations, that is
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x(l), x(2), ... x(N)a 0& 0. .. , 0 (4.8)

L zeroes

where L is a yet unspeoified positive integer. If we were to take the

Fourier transform of this padded time series, we would obtain the same

transform (4.6) and the same periodogram function (4.5). On the other hand,

if we were to take a N+L point FFr of this padded time series, the following

more finely spaced samples of the Fourier transform would be generated

N-1
2wk (,

e -!x x(A+l) lff2ikII j ML(49= N OJk(N+L (4.)

If these sampled values were then substituted into expression (4.5), we would

obtain sampled values of the periodogrom at the more finely spaced

frequencies ok - 2n/(N+L) for OjkN+L. The effect of the L zero padding is

then seen to result in a reduction of the frequency sampling interval from

2u/N to 2n/(N+L)-. By selecting L suitably large, we can reduce this sampling

interval to any degree desirable.

One should not gain the mistaken impression that padding will enable us

to achieve any degree of frequency resolution desired. The fundamental

unsampled periodogram (4.5) has an inherent freavency resolution onaabilitv

of Am - 2x/N (or equivalently Af - 1/N)-. When using a N point IFT

implementation of the periodogrm, however, it is entirely possible that

spectral peaks may lie between the sampled frequencies Ok = 2xk/N. In such

oases, the peaks effect on the sampled periodogran may be seriously diluted

even though it would be clearly evident in the unsampled periodogrm. Upon

padding with L zeroes, we can remove the sabiguity caused by this sampling

process and still retain the computational efficiency of an FIT

implementation.
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V. AR Modeling - Time Series Observations

The task of generating AR spectral models from a set of time series

observations has been of primary concern to many investigators over the last

few years. Undoubtably, the most widely used AR modeling procedure is the

Burg algorithm as first proposed in 1967 [131. This algorithm not only

provided a spectral estimation capability that was theretofore lacking, it

also inspired an intense search for improved rational spectral estimation

procedures. Iuch of contemporary spectral estimation theory has been

directly influenced by the philosophy contained within the Burg approach. As

a matter of fact, many of the more recent rational estimation procedures were

developed so as to overcome some of the deficiencies observed in the Burs

algorithm as typified by line splitting and biased frequency estimates.

Nonetheless, the Burg algorithm still occupies the pre-eminent position among

contemporary AR modeling methods. Since its operational behavior is so well

documented, we refer the interested reader to the relevant literature for its

detailed development (e.g., see refs. [231,031]).

In this section and section IX, we will demonstrate that many of the

popularly used AR methods (which includes the Burg algorithm) may be

interpreted as providing statistical estimates of the fundamental Yule-Walker

equations (2.11) that govern AR processes. These estimates are to be

obtained from the set of contiguous time series observations

x(1), z(2), .... x(N) (5.1)

which are made available through soom measurement mechanism. more

specifically, it is well known that various contemporary methods either

explicitly or implicitly use these observations to generate estimates of the

(p+l)x(p+l) autocorrelation matrix R which appears in the fundamental

relationship (2.11). Clearly, the elements of the matrix estimate R must be

such that

R(i,J) is an estimate of rx(i-J) for I j ij 'j p+1 (5.2)

Once these estimates have been computed from the given time series

observations, the resultant autoregressive parameter vector estimate is. in

accordance with expression (2.11). obtained by solving the linear system of
qu t i on . 1

R lbc!2 11 (5.3)
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in which the normalizing parameter b. is selected so that the first component

of & is one. The steps of this general AR modeling approach are summarized

in Table 5.1.

Step 1: Compute Estimates of R(ij) - rx(i-j) for 1 (io],.j+1 to form

the (p+l)x(p+l) autocorrelation matrix estimate 3.

Stop 2: Solve the linear system of equations Ra - lboj2 e_1 in which the

normalizing coefficient b. is selected so that the first

component of A is one.

Stop 3: The required AZ(p) spectral estimate is then specified by
2SAR(OJ*) " be o

S1 + a1 .- J. + ... + &P e-JPU

Table 5.1 Basic steps in obtaining an AR(p) spectral estimate.

The quality of the AR modeling approach as embodied in expression (5-.3)

is critically dependent on the choice of the antocorrelation lag estimation

procedure used. For many applications, the standard unbiased autocorrelation

estimates as Sives by

N

R(ij) - k x(k+i-J)7(k) 1 i p41  (5.4)

typically provides the best selection in terms of spectral estimation

performance. It is seen that the antocorrelation matrix formed from this set

of estimates will be Tooplitz sad symmetric; properties shared by the actual

autocorrelation matrix being approximated. Moreover, this estimate is
A

consiplent in the sense that as N approaches infinity, we have R --- R under

the second order ertodic assumption on the time series. In view of all of

these favorable qualities, it is not surprising that the standard ubiased

estimator (5.4) generally provides excellent AR modeling performance. In

Section II some of the more popularly used adaptive methods of AR spectral

estimation will also be studied.
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VI. ARA Modeling: Time Series Observations

The methods for generating ARM models based upon times series

observations fall into basically two categories: the ak and bk parameters

are either evaluated (i) simultaneously or (ii) separately. In the first

category, maximum likelihood based techniques form one of the most widely

used of such methods. These include exact maximus likelihood approaches

(e.t.. refs (6] and [481). and, least square methods which approximate the

exact likelihood function (e.g., refs [3], [9], [29]). Although offering the

prmise of optimum modeling, these maximum likelihood methods entail the

application of nonlinear programing solution procedures. As such, these

solution procedures are computationally inefficient, and, they suffer the

obvious drawbacks characteristic of nonlinear programming methods. Other

nomaximm likelihood methods which fall into category (i) have been proposed

(e.g., see refs. [30],[40],[60]). These methods also entail the utilization

of nonlinear programming solution procedure.

In recognition of the obvious shortcomings of nonlinear programing

based techniques, a number of methods have been proposed which employ a

separate evaluation of the AR and MA parameters. By using this approach, it

is generally possible to obtain satisfactory modeling while not incurring the

drawbacks of a nonlinear programing solution procedure. Those techniques

typically entailed using the first p extended Yule-Walker equations to obtain

estimtes, in a linear fashion, for the AR parameters (e.g., see refs

[261,[28] [351,[38]). Unfortunately, the utilization of the minimal nuaber

of extended Yule-Walker equations (i.e., p) gave rise to an undesirable

parameter hypersensitivity. In recognition of this fact, a procedure for

using a overdetermined set of Yule-Walker equation evaluations to decrease

this hypersensitivity was proposed [151. This approach has since been

adopted by other researchers in spectral estimation applications with success

(e.., see refs. [71,[121,1361,(SI). With this in mind, we shall now give a

detailed development of the overdeternined approach to estimating the AR

parameters of an ARM model.

AR Parameter Estimation

Although the procedure presented in Section 11 for generating ARIA

models is attractive, one is rarely provided with exact autooorrelation

44

- - -ft,-0 ' - . --



information. The more common situation is one in which the only available

information takes the form of a finite set of time series observations

x(l), x(2), . . . , x(N) (6.1)

The task at hand is to then use those time series observations to estimate

the parameters of a postulated ARNA model. In this parameter estimation, we

shall seek to Incorporate the philosophy as embodied in the extended

Yule-Walker ARA model equations (2.23) for estimating the model's ak

parameters.

This will effectively entail using the given time series observations to

generate an estimate of the tx(p+l) autooorrelation matrix RI which appears

in expression (2.24). Namely, using any of a number of available procedures,

we first compute the following autocorrelation lag estimates
A
R1 (iJ) - an estimate of rx(q+l+i-j) 1 j i j t (6.2)

1 1Jj 1p+l

Two particularly attr-ctive procedures for effecting these autocorrelation

estimtaes will be detailed at the end of this section and in Section X.

Independent of what procedure is eventually used, the not result of this

first step will be the generation of a tx(p+l) autocorrelation matrix
A

estimate Ri. Due to errors inherent in the autocorrelation estimation

process, however, this matrix estimate will generally have full rank (i.e.,

min (p+lt)) instead of the theoretical rank p which is possessed by the

matrix Rl being estimated. This being the case, it is therefore not

generally possible to find an autoregressive parameter vector with first

component equal to one which will satisfy the theoretical relationship RU =

2 as given in equation (2.23). As such, the txl extended Yule-Walker

equation error vector as specified by
A

.I - nlU (6.3)

will be generated.

A little thought will convince oneself that the elements of this error

vector will be composed of a sum of many random variable products (i.e.,

x(k+m)f(m)) used in formalating the autocorrelation lag estimates.

Consequently, an assumption that the error vector elements tend to be

Gaussianly distributed Is u reasonable one. The Joint density function of

the extended Yule-Walker equation error vector ay be therefore approximated

by

45
I Si.

- -' . ..~ *. ' - ~ ~ -U -.-. --



p(A.)- iv i a-0-5(.ol) (6.4)

(2)t/2

in which W-1 - 2(gt*] designates the error ovaiane matrix which is

generally unknown and where the expeeted value of S is takesn to be zer&..

With the availability of the error joint density function (6.4), it is

now possible to apply the maziimn-likelihood concept for estimating the

autoregressive parmoterv. Nmely. mskisq use of relationship (6.3) and the

joint density function (6.4), it is possible to generate a joint density

function for the autorgressive parsnoter vector & which will be of form

p(J) - Te-o.S(ASI*RA)

We now seek that vector j which maximizes this joint density function subject

to the constraint that the first component of & be one. Ignoring the effect

of the multiplicative term y. the psuedo maxim=-likelihood selection for A

then corresponds to solving the following constrained minimization problem

AA
min aR*Ra (6.5)

a(1)-l

Using standard Lagrange multiplier techniques, the solution to this

constrained minimization problem is obtained by solving the following system

of (p+l)x(p+l) linear equations
A A
R*l W RI1  .=  1 (6.6)

where a is a normalizing constant selected so that the first component of

Ae is one.1 Expression (6.6) constitutes the so-called high nerformano

hotbed of autoresressive parmeter selection 115]-[201.

It is to be noted that in minimizing functional (6.5) with respect to

the normalization constraint imposed on 's first component, the error vector

is being minimized in the least squares sense. In effect, we are then

selecting j so as to best satisfy the theoretical relationship (2.23) given

by R1A - .. Using this interpretation, the positive definite matriz V can be

In those rate cases whore the (p4.lllpil) trx 1 1  is singular, the
autoregressive parmeter vector will correspond to a suitable nozaalized
eigenveoctor associated with a zero eigenvalue of this matrix.
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alternatively thought of as providing a weighting (instead of being an

unknwM ovariance matrix inverse) in the error functional (6,.5).. It is

therefore logical to take W to be a diagonal matrix whose nonnegative

diagonal entries wk for k - 1,2& .,.. t provide a meohanim for weighting in

any desirable fashion the various extended Yule-Walker equation

approximations appearing in (6.3). The uniform weighting selection

V - (6.7)

where I is the txt identity matrix has been found to provide excellent

modeling performance when the matrix estimate RI is nbiase.

A few words are now appropriate concerning the selection of the integer

t which specifies the number of extended Yule-Walker equations that are being

approximated. When t is set equal to its minimal value p, the approach here

taken bears a close resemblance to various other ARMA modeling sohemes (e..o

see refs. [26],[28],[35],[38]). In this case, the minimal number of p error

contaminated extended Yule-Walker equation evaluations are being used in

fixing the model's p autoregressive coofficients. A little thought should

convince oneself of the potential parameter hyprsensitivity which can arise

in this situation. To illustrate this point, let as briefly consider the

task of finding a line which 'best' fits a set of error contaminated

two-tuples (xk, y). Although only two two-tuples are needed to fix the

line's two parameters (i.e., its slope and y intercopt), it will be generally

more desirable to fix these parameters by using more than this minimal number

of two-tuples thereby obtaining a more 'representative linear fit'. This

will entail finding the 'best least squares linear fit'. The benofits

generally accrued in using this overdetormined approach are demonstrated in

Figure 6.1.

With the above in mind, the real advantage of this paper's approach is

achieved when the integer t is selected to be larger than p. In this case,

more than the minimal number of extended Yulo-Walkor equation evaluations

i.e., t instead of p) are being used in fixing the model's p autoregressive

coefficients. It is then not surprising that a desirable decrease in

parameter hypersensitivity is generally realized upon selecting t ) p. An

indication of the benefit accrued by seloting t > p was illustrated in

Section III for the case of AR modeling with perfect antocorrelatio lag

values. A similar advantage will be dmonstrated in Section VIII when ARMA

models are generated from raw time series observations. In the situation
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being considered here, the integer parameter t is typically selected to lie

within the tange

p j t j N-q-1 (6.8)

with generally lger values than the minimum p being preferred for modeling

f idelity.

From an overall modeling viewpoint, the standard unbiased estimator has

boon found to generally provide the best choice for the lag estimates

required in expression (6.2),. Specifically, the required autocorrelation lag

estimate entries are generated according to

N-n

An 1 •(k+n)i(k) O.nq+t (6.9)rx(n) =L
N-n k-l

where q+t corresponds to the largest autocorrelation lag argument appearing
A

in matrix R1 . We would of course use the property that

rx(-n) - iEx(n) to obtain any negative lag autocorrelation entries which may
A

be needed in formuating R1. In using this unbiased estimate approach, the

resultant autocorrelation matrix estimate will have a desirable Toplitz

structure.
iZA* A

The (p+l)x(p+l) matrix R1 WR1, which completely characterizes the

autoregressive parmeter vector solution through expression (6.6). will have

components which are readily computable from the estimates (6.9). Using

simple matrix manipulations, it is readily shown that the general (i.j)th

element of this matrix is specified by

t

RiWRj(i 4) - w()r(q+nl) #(q+m i-J) for 1 j ioj j v+l (6.10)
Rol

whore the w(m) correspond to the diagonal elements of the diagonal weighting

matrix V. Upon generation of the matrix RliRl according to this expression.

the required autocorrelation parameter vector is straightforwardly obtained

by solving the system of linear equations (6.6). A Fortran program listing

of an implementation of this procedure is given in the appendix where the

flexibility of using the standard unbiased or the standard biased (i.e.,

divisor N-n in equation (6.9) is replaced by N) autoeorrelation estimate is

avail able.
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XA Parameter Rstimation

To complete the ARMA modeling, it is necessary to compute an estimate

for the moving average component lBq(eJN)12. It has been the author's

experience that independent of which procedure is used, this A component

estimate is almost always of significantly lower quality than the associated

Ac component

p 2
Ap - *k(6.11)

k=0

in which ak denote the autoregressive paramoter estimates as generated from

expression (6.6). A high quality low order MA spectral estimator has yet to

be developed. Despite this shortcoming, some reasonably well performing MA

estimators will now be briefly discusse*.

Nany contemporary MA component estimators are based on utilizing the

forward -nd backward residual tine series associated with an ARMA time

series. In particular, the forward residual time series olmoat are

computed from the given observations (6.1) and the antoregrossive pirameter

estimates (6.6) according to

Vp
sf(n) I &k x(n-k) p+1 n N (6.12)

k-0

Similarly, the backward residuals component are generated using

p

sb(n) = ak x(n+k) I . n jN-p (6.13)

k-O

As indicated in Section II, each of those residual time series will be

governed by the same MA(q) process if the time series (x(n)) is an ARIMA(p.q)

process with autoregressive parameters ak. With this in mind, a Procedure

for extracting this MA characterization from the computed forward and

backward residuals will now be given.

The most direct procedure for achieving the required MA(q) estimate is

to first generate the following estimates of the residual time series' first
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It is also possible to employ the smoothed periodogrsm to obtain another

form of M(q) estimate. This entails segmenting the computed residuals in

blocks of length q+1 (overlapping or not overlapping) and then averaging the

resultant q+l length periodograms for each of these blocks. 7his procedure

has been employed with a moderate degree of success [17]. Similarlyo we

could make obvious adoptions of the procedures treated in Section II under

the ARA modeling subsection to achieve alternate XA estimater. For example,

if we were to use the procedure as characterized by expression (2.38),

estimates for the an parameters would be computed from

U-1

- .k z(n-k) 1 1.anjp (6.18)

k-O

The required ARNA spectral estimates would then be given by incorporating
these estimates into expression (2.33) to result in

A

Sz(eJS) - Tz(O) + Uie [D(eJ)] (6.19)
where D(OO) is obtained by substituting the Sk sad *k estimates into form

(2.34).
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q+1 autocorrelatioa lags

N-p-n
r(a) - [sf (n+p4.kf( +k) + .b( k) Tb(k) ojnq

N-p- 1 ki (6.14)

If the residual time series do in fast correspond to a MA(q) process, it will

be found that the rs(n) will be approximately zero for njq+l. ITis can be

used as a oonveniont test for the appropriateness of the ARA model, the

order seleotion, and, the estimates sk. In any case, upon taking the Fourier

transform of these autooorrelation lags, we obtain the EA(q) spectral

estimate component

q

I9q(eJ w) 12 = w(n) (n)-Jts (6.15)
n-q

in whioh w(n) is a window sequence sad use of the fact that r5 (-n) - Es(n)

will be made when evaluating (6.14). The overall ARJM(pq) spectral. estimate

is then given by

SWm) -(6.16)I,(SJ-),2

A

where Ap(eJW) is specified by expression (6.11).

A few words are now appropriate concerning the selection of the window

to be used in estimate (6.14). If the reotangular window choice w(n) - 1 is

made, this estimate will not have the desired property of being guaranteed

positive-semidefinite. To achieve this positive-semidefinitoness. we could

instead choose the window to be

W(n) " (N_.-) (ql-.n' (6.17)
\q+l

Uatortuastely, this selection can give rise to a seriously distorted NA

estimate In view of the triangular like weighting thereby employed. The
selection of w(n) is quite important and this choice should be based on the

particular application at hand and user experience.
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VII. ARMA Modeling: A Singular Value Decomposition Approach

We have yet to address the important issue of ARLM model order

determination. In particular, whether one is provided with exaot

autocorrelation las or time series observations for effecting the modeling.

how one chooses appropriate values for the order parameters p and q remains

an open question. It is recognized that this model order information is

implicitly contained in the autocorrelation matrices which characterize ARME

models. In this section, we shall present a procedure for eztraoting the

prerequisite model order values which will make use of a singular value

decomposition of an extended autocorrelation matrix. An important byproduct

of this procedure will be an adaption of the ARNA modeling procedure of the

previous section which provides for a signiican improvement in spectral

estimation performance.

When the ARMA model order parameters are not known apriori, it will be

judicious to select the initial model order to be much larger than the

'anticipated' order. In particular, let us consider the extended order ARNA

(peqe) model for which Pe is selected to be larger (usually much larger)

than the eventual model order parameter p to be used. Although we typically

do not know p apriori, it is generally possible to make an educated guess of

p so as to ensure that

Pe>p (7.1)

In accordance with expression (2.23). it then follows that the tx(pe+I)

extended order autocorrelation matrix associated with this ARKA(pe,qe) model

may be expressed as

r"(qe+l) rz(qe) • . • rx(qo-pe+l)

rx(qe+2) rx(qe+l) . . • rx(qe-pe+2)

Re. . (7.2)

rx(qe+t) rx(qe+t-1) ... rx(qe-Po+t)

If the autocorrelation lag entries used in this matrix correspond to an

ARMA (p,q) process for which qe-pe I q-p, it then follows from the results of

section I that the rank of the tz(pe+l) matrix Re will be p. In arriving at

this result, we of course assume that t is selected to at least equal p., To

determine the required order parameter p, we then simply set p equal to the
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rtank of 3. for the idealistic case in which exact antocorrelation lag

information is available.

To obtain the ARMA model's (p+l)zl autoregressive parameter vector A

from this extended order autooorrelation matrix, it is possible to appeal to

the theoretical developments of Section II. In particular, let us consider

the set of submatrioes of Is formed from any p+1 contiguous columns. This

set of tz(p+l) matrices is specified by

Rk - [submatrix of Re composed of its kth through

p+kth column vectors inclusively] for l"k0Pe-p+l (7.3)

In accordance with the ARNA model extended Yule-Walker equation

relationships, it is readily established that the required unique

autoregressive parameter vector A will satisfy the set of homogeneous

relationships

R'h - _ for ljA Pe-P-l (7.4)

where the first component of j is constrained to be one. In point of fact,

expression (7-.4) provides a matrix representation for the t extended

Yule-Walker equations (2.22) defined on the specific indices qs+2-k j In

qo+t+l-k. It is important to note that this conclusion will be valid only if

the autocorrelation lag entries used in forming Re correspond to an ARJM

(p,q) process, and, the order parameters are such that Pe I p and qe-pe >

q-po
We shall now apply this rank characterization of Re to the practical

problem in which the ARJA modeling is to be based only on the time series

observations

x(l), z(2), .00. x(N) (7.5)

and not on actual antocorrelation lag information. In this case, it will be

necessary to first compute autooorrelation lag estimates from these

observations. These estimates are next substituted into the matrix format

(7.2) to in turn generate the extended order autooorrelation matrix estimate

Re* Since the atocorrelation lag estimate entries will be invariably in

error, it follows that the matrix Re will normally have full rank (i.e., mn

(P+l.t)) even when the time series under study corresponds to an ARM (pq)

process. Nonetheless, even though Re will have full rank, its 'effective'

rank will still tend to be p. To better quantify the vague term 'effectivet'
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rank, it will be beneficial to introduc, the principle of singular value

doecompo siti on.

Singular Value Deomnosition

In a variety of applications, the ultimate objective will be that of

solving a linear system of equations. The matrix associated with this system

of equations not only characterizes the desired solution. but, it will also

very often convey dynamical property information. With this in mind, it

often behooves us to examine the salient properties of this characterizing

matrix.- The singular value decomposition of a matrix as outlined in the

following theorem serves this role particularly well (e.g., see ref. [271 and

Moeorem 7.1: Let 4 be a mzn matrix of generally

complex valued elements.. Then there existsm

and a-n unitary matrices U avid V, respectively,

such that1

A -U Z ye (1.6)

where X is a mmn matrix whose elements are zero

except possibly along its main diagonal. These

nonnegative diagonal elements are ordered such

that

a11 1 c22 2 ~ . h 1 0
where

h - min (a, n)

The diagonal elements k are commonly referred to as the singular values of

matrix A. It is well known that the nonzero singular values will correspond

to the positive square roots of the eitenvalues of the nonnegative Nezitian

matrices MCO and AeA. Moreover, the columns of U (or V) will correspond to

the appropriately ordered orthonormal oigenvectors of the nonnegative

Nermitian. matrices

AA 0(or A!A).

The singular values akk convey valuable infotuation concerning the rank

characterization of matrix A. This is readily demonstrated upon considering

1The matrices V and V are said to be unitary If U-1 - U and
V-1 -s
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the problem of finding that isu matrix of rank k which will best approximate

A in the Frobeniou8 norm sense (this assuMes that Okk > 0 with k h),. The

Frobonlou8 norm of the axn matrix difference A-B is defined to be
1/2

1IA - 11Lj-bj 1](

We now seek to find that as= tank k matrix B whioh will render this criterion

a mnimum. The solution to this approximation problem is contained in the

following theorem [271

Theorem 7.2: The unique isa matrix of rank k j

Rank [A] which best approximates the msum matrix A

in the Frobenious norm sense is given by

A~k) V. Xk V °  (7.8)

where U and V are as in expression (7.6) while Xk

is obtained from M by setting to zero all but

its k largest singular values. The quality of

this optimum approximation is given by

h OJ211/2
IIA - Ak)II -Lk h (7.9)

lJ-k+l

Thw degree to which A(k) approximates A is seen to be dependent on the

su of the (h-k) smallest singular values squared. As k approach*e h. this

am will become progressively smaller and will eventually go to zero at k -

h. In order to provide a convenient measure for this behavior which does not

depend on the size of matrix A, let us consider the normalized ratio

M IIAll~j

a 2 + a222 +. +k21/2 1 k h (7.10)
0 12 + 4 22 + *- + e.iJ

Clearly, this normalized ratio approaches its maximm value of one as k

approaches h. For matrices of low effective rank, the quantity (k) is close

to one for values of k significantly smaller than h. On the other hand.
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matrices for which k must take on high values (i.e., k h) to achieve a (k)

near one are said to be of high effective rank.

Aulication of SVD to ARM Modelina

To determine the required order for an ARM model, we shall now make a

SVD of the tx(pe+l) extended order autooorrelation matrix estimate Re s that

is

Re = U(V* (7.11)
where U and V are tst and (Po+l)x(pe+l) unitary matrices, respectively and

X is a tx(pe+l) matrix of the form called out in Theorem 7.1. The required

autoregressive order p is obtained by examining the normalized ratio I (k).

Namely, p is set equal to the mallest value of k for which 1(k) is deemed

'adequately' close to one. The terminology 'adequately close to one' is

subjective and will depend on the particular application under consideration

as well as user experience gained through empirical experimentation. In any

case, the not result of this step -ill be a rank p optimm approximation of

the tx(Pe+l) extended order autocorrelatiou matrix, that is

Re (p ) . U lp V* (7.12)
A simple matrix manipulation reveals that this rank p approximation may be

equivalently represented as

p
Re(P) . I ann Sa In (7.13)

n-1

where 3k and Ik are the kth colum vectors of the txt and (pe+l)x(Pe+l)

unitary matrices U and V, respectively. We shall now provide two separate

procedures for using this rank p approximation for effecting autoregressive

parameter estimates.

Method I: ARA (pe,qo) model

In this approach, the rank p approximation (7.12) is interpreted as

providing an improved estimate of the underlying extended autocorrelation

matrim; It will be convenient to decompose this rank p approximation as

follows

Ri(O) [rl(P) : Ra(P)] (7.14)
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where rj(P) is the left most til column vector of R*(P) and R()is a txp.

matrix composd of the pe right most tx1 column vectors of g*(p)* We now

seek a (pg+1)xl autoregressive parameter vector & with first component equal

to one that will satisfy the theoretical relationship

Since the rsank of R,(P) is less than full, there will exist an infinity of

solutions to this problem. We shall select the minimum norm solution as

specified by

ale

-- tx(P)]# 11(p)

in which the superscript notation # denotes the operation of generalized

(psuedo) matrix inversion. This autoregressive parameter selection procedure

has proved to be particularly effective in low 341 enviroments. It is

readily shown that this nimum norm solution can be simplified to

4

57



p

, i vk(o)fl
k-1

k-1

p.I 'k( o)..k

(7.15)

p.
I Ivk(o) 12

k-p+i

where the Ik correspond to the column vectors of the unitary matrix V

appearing in the SVD representation (7.12).

Method II: ARMA (pq) Model

The best rank p approximation matrix (7.12) contains within its column

structure the characteristics required to estimate autoregressive parameters

of a lover order ARMA(p,q) model. In particular, the submatrices of Re(P)

composed of its columns k through p+k inclusively yield rank p approximations

of the tx(p+l) autocorrelation matrices Rk for 1 . k

Pe - p+l as specified by expression (7.3). We shall denote these rank p

approximations by Rk (p ). Due to the SVD operation and errors inherent in

generating l9, there will generally not exist a unique autoregressive

parameter vector with first component equal to one which will satisfy all of

the pe-P+1 estimates of relationships (7.4). Nonetheless, it is still
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desirable to find an autoregressive parameter vector for which each of these

relationships are almost satisfied. A functional that measures the doree to

which this is accomplished is given by

f(A) " je S(P), (7.16a)

where
pe-p+l

S(P) - I Rk(p)ek(p) (7.16b)

k-l

The (p+l)x(p+l) matrix S(P) is nonnegative Hermitian and may be conveniently

computed using the relationship

p p*-p+l

sp) vk k* (7.17)

n-i k-i

in which Ynk denotes the (p+l)xl vector as specified by

ink - [vn(k),Vn(k+1) .. , v,(k+p)] (7.18)

1 k . pe-P+l

1 np

This vector is seen to be a windowed segment of the nth column vector (i.e.,

1n) of the unitary matrix V that in part identifies the SVD representation

(7.11). Moreover, due to the simple shift relationship between the vectors
k k+lYand + it is possible to devise an iterative procedure for updating the

(p+l)x(p+) matrices as k evolves. This will entail (p+l) computations

for each value of k.

Upon generating the (p+l)x(p+l) matrix S(P), we next wish to select that

autoregressive parameter vector & with first component of one so as to

minimize quadratic functional (7.16). This constrained minimization will

result in the best least square approximation of the theoretical

relationships (7.4). Using standard procedures, the required optimum
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autoregressive parameter vector is found by solving the following linear

system of equations1

S(P)a - aP (7.19)

in which the noralizing constant a is selected so that the first component of

a is one. It will be shown in the next section that this SVD version of the

ARNA modeling procedure can lead to a significant improvement in modeling

performance.

The concept of a SVD representation has been previously incorporated

with uccess in effecting AR models [42] and [61]. Incorporation of an SYD

AR model was there shown to produce an increase in spectral resolution

capabilities. More recently, the SVD representation was used in ARA

modeling whore impressive results were reported [22]. Undoubtably, the impact

which SVD will ultimately have on spectral estimation (and in other

applications) is only beginning to be appreciated.

11n those rare cases where s ( p ) is singular, the required autoregressive
parameter vector is set equal to an(irpropriately normalized ilenvector
assoeiated with a zero oigenvalo of S
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VIII. Numerical Examples

Is this seotion, we shall investigate the comparative spectral

estimation performance of the rational modeling procedures as developed in

Sections VI and VII with those of popularly used alternatives. The first

example will treat the problem of effecting a rational spectral estimate from

a set of observations of an AIJIA(4.4) process. In the second example. we

shall examine the modeling performance for the special case of sinusoids in

white noise.

Example 1: In this example, we shall examine the time series as

characterized by (see ref. [11])

x(n) - xl(n) + x2 (&) + 0.S 6(u) (8.a)

which is composed of the two AR(2) time series generated according to

zl(n) - 0.4 zl(n-1) - 0.93 xl(n-2) + el(n) (8.1b)

x2 (n) - -0.5 z2(n-1) - 0.93 z2(n-2) + a2(n) (0.l)

where s(n), *1(n) and a2(n) are mutually ucorrelated Gaussian zero mean

white noise processes with variance one. A simply analysis indicates that

the power spectral density function associated with time series (8.1) is

given by

Sz(*) - 11 - 0.4e-JO + 0.93e-J2 -1 +
11 + O.5e-JW + 0.93e-j2Ej-2 + 0.25 (8.2)

and is plotted in Figure 7.1a.

Using the time series description (8.1), twenty statistically

independent realizations each of length 125 were next generated. These 20

realizations were then used to compare the modeling effectiveness of this

paper's method with the Box-Jenkin's maznum-likelihood method. The twenty

(one for each realization) superimposed ARX& (4.4) spectral estimates

obtained using the Box-Tenkins iterative method are shown in Figure 8.1b.

The mumber of iterations required to achieve these estimates ranged from 10

to 700 with 50 being a typical requirement. Next, this paper's method as

represented by expression (6.6) with unbiased autocorrelation lag estimates

and W - I was used to obtain the AlNA (4.4) model's autoregressive

coefficients. Relationship (6.15) with the window selection (6.17) was need

in forming the MA component of the spectral estimates. The twenty

superimposed ARM& (4,4) spectral estimates thereby obtained are shown in

Figures 8.1, 8.1d, and 8.1e for various choices of t. From these plots, it
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is apparent that progressively improved estimates are achieved upon

increasing t from its minimal value of 4, to 8, and then to 20. Moreover,

these spectral estimates were of higher quality than those obtained with the

maximum-likelihood method which exhibited a larger variance in estimate.

Rzample 2: In this example, we shall investigate the comparative

spectral estimation performances of various widely used methods on the

classical sinusoids in additive white noise problem. The particular time

series to be considered is given by

x(n) - sin(2afln) + sin(2xf2n) + w(n), 1 j n I N (8.3)

fl - 0.2. f2 - 0-.215, 4 - 0.5

This time series was previously examined in Section III where different

rational models were generated from the 'ozaet' autocorrelation lags

associated with it. This is a particularly appropriate time series for

testing the resolution capabilities of spectral estimators because of the

closeness of the sinusoidal frequencies (i.e., f 2 -fl - 0.015) and the

prevailing low signal-to-noise ratio of zero dB (individual sinusoid power to

total noise power).

In order to gain a reasonable good statistical basis for comparison, ton

statistically independent realizations of the time series (8.3) were

generated with each realization being of length 128 (i.e., N - 128). Using

these ten different sets of time series observations, ten spectral estimates

were made for various widely used rational spectral estimators. The

resultant ton spectral estimates for each estimator were then plotted in

Figures 8.2 to 8.7 in a superimposed fashion (except for the periodogram) so

as to depict consistency of estimate. The ideal estimate would of course be

two sharply defined peaks at frequencies 0.2 and 0.215. A brief description

of the different estimators and their performance on these test samples is

now given.

MA Estimates: The periodogrm as implemented by the fast Fourier

transform was first used in generating spectral estimates for each of the ten

different 128 data length realizations. Specifically, expression (4.7) with

N - 128 was incorporated into the MA spectral estimator (4.5) to generate the

sampled periodogrsm estimate

62



N-1 2

fllwkl 1i x , G2uk 0Ojk jN-1 (8.4)
N N It-0N

It was found that each of the ton peuiodograms produced remarkably similar

results. A typical 128 point FFT periodorm for one of these trials is

shown in Figure 8.2a. From this plot (and the nine others not shown), it was

not possible to unambiguously detect the presence of two spectral peaks at

frequencies 0.2 and 0.215.

In order to ease the potential ambiguity created by the finite frequency

sampling of the periodogram (i.e., Am - 2w/N), the concept of 34ddint as

described in Section IV was next incorporated. Using this approach, the

original tine series observation of length 128 was next appended with 128

zeroes. The resultant 256 point padded FFT periodogram is shown in Figure

8.2b. In this padded case, we are able to unambiguously detect the presence

of the two spectral peaks at 0.2 and 0.215. A further padding of 256 zeroes

is found to result in the 512 point padded FFr periodogram shown in Figure

8.2o. The prerequisite spectral resolution is again achieved.

AR Estimates: In AR modeling, the most widely used procedure is the

Burg algorithm. With this in mind, the Burg algorithm was next used to

generate spectral estimates for each of the aforementioned ten observation

sets of length 128. The ten superimposed Burg AR(20) estimates which

resulted are depicted in Figure 8.3a. Although a detection of spectral

energy in the region about f - 0.2 is evident, the appearance of two spectral

peaks is not. The ordering selection p-20 was evidently not sufficient for

the required resolution. Upon increasing the AR order to p - 24, however,

the Burg AR(24) estimates produced two reasonably well defined peaks about f

- 0.2 and f - 0.215 in nine out of the ten estimates. These estimates are

plotted in superimposed fashion in Figure 8.3b. It was further determined

that more sharply defined peaks are achieved in all ten estimates when the

order was increased to forty. The Burg algorithm is then seen to provide a

satisfactory resolution performance for the time series under study provided

that the AR order is selected to be on the order of 24 or more.

In order to demonstrate the effect of using more than the minimal number

of extended Yule-Walker equations in arriving at an AR model (the Burg

algorithm uses the minimal number), the ARNA modeling technique as embodied
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in expression (6.6) with V - I and unbiased autocorrelation lag estimates was

next used with p - 20, q - 0. and, t - SO. The resultant ten AR(20) spectral

estimates which arose when using this approach are shown in Figure 8.3c. A

resolution of the two sinusoids was achieved in all ten estimates. It is

significant that the lower order AR(20) spectral estimates as generated using

this paper's method provided more sharply defined peaks than the higher order

Burg AR(24) spectral estimates-. This is primarily due to the fact that fifty

extended Yule-Walker equations were used in specifying the 20 autoregressive

parameters. The degree of smoothing achieved in applying this approach is

evident from this numerical example.

ARMA Estimates: The ARNA modeling procedure as represented by

expression (6.6) with V - I and unbiased autocorrelation lag estimate entries

was next used to generate estimates of the autoregressive coefficients of an

ARNA(p,p) model for p - 8 and 12. In accordance with the results of Section

III, plots of IAp(eJ*)1 - 2 were then made so as to reveal the required

spectral information for the sinusoids in white noise case (i.e.. the zeroes

are not used) . In Figure 8.4a, the ten AR(8,8) spectral estimates which

srose for a choice of t - 70 are shown superimposed. Although spectral

energy in the neighborhood of f - 0.2 is detected, the presence of the

required two spectral peaks is not. Clearly, the order selection p-8 was not

sufficient to achieve the desired resolution. Upon increasing the order to

ANNA (12,12) and retaining t - 70, however, the resultant ten spectral

estimates shown in Figure 8.4b each achieved the desired spectral resolution

with two sharply defined peaks about f - 0.2 and f - 0.215. These spectral

estimates have been obtained with but twelve autoregressive parameters, and,

are seen to be J i a superior to the Burg AR(24) estimates which

required twenty-four autoregressive parameters. In terms of spectral

estimation fidelity sad parameter parsimony (i.e., effective use of

parameters), it is clear that the ARNA modeling method herein developed has

provided a superior performance for the problem at hand.

A truly significant increase in spectral estimation performance is

achieved upon adopting the SVD approaches to ARM modeling as outlined in

Section VII. Namely, after setting Pe - qe a 14 and t = S0, it was found

that the effective rank of the extended order autocorrelation matrix estimate

Re was four. Setting p-4 and using relationship (7.15), the ten ARNJ(14,14)

spectral estimates which arose are shown in Figure 8.4c. Next, letting pr4
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in ompression (7.17), the ten SOD derived hlLA(4o4) speotral estimates which

arose are shown superimposed in Figure 8.4.. These spectral estimates are

not only of uniformly high quality, but, they represent the lest order

rational model which is compatable with the two sinusoids in white nois

case. Meteover, the quality of the peak frequency estimates and associated

pole mag"ud.o (theoretically equal to one) estimates is exceptional as shown

in Table 8.1. The quantities jk(Pk) and elk2 (wk 2) for k - 1.2 represent

the sampled means and variances, respectively, of the peak frequencies (pole

magnitudeos) as determined from the ten spectral estimates.- I !

k k Iphl aIPki

1 0.20 0.1998 0.0012 0.9944 0.0062

2 0.215 0-.2159 0.0011 0.9974 0.0080

Table 8.1: Statistios of SVD ARMA (4,4) estimates.

To demonstrate the worth of singular values in model order detetmination

when using the SBD approach, the fifteen singular values which characterized

the extended ord.6t autocorrelation matrix estimate Re for one of the ton

observation sets are now given

6l -18.3 c22 u 18.2 33 = 5.30 , 4  4.69

a53 0.85 a 066 - 0.78 , .. .. a15.15 - 0.21

It is apparent that the first four singular values are dominant (i.e., (4) -

0.995) thereby indicating that the effective rank of Re is four. Thus, the
correct selection of ARM order p - q - 4 is made upon examination of the

singular values behavior;

Alternative Method: In Section III, an alternate method for detecting and

estimating the frequencies of sinusoids in white noise was proposed. This
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method is represented by the least squares solution (3.9) to an overdetermined

system of linear equations. Using this expression with a selection of p - 14,

t - 50, T - I, and, unbiased autooorrelation lag estimate entries for Re,

spectral estimates for eaoh of the ten time series of length 128 were

generated. The results of these estimates are depicted in superimposed style

in Figure 8.5 in plots of 1/1A1 4(oJ*)1
2 . Two sharply resolved peaks are

achieved in each of the ton estimates. It is noteworthy that this procedure

provided good estimates for a low order choice. A paper now in preparation

will demonstrate the euat iou performance of this new procedure for a more

general class of deterministic signals in white noise. Improvement is there

achieved by making an estimate of the white noise variance a2 using expression

(3.2) at n-O, then subtracting this estimate from the rz(0) tern and then using

an SVD. Initial empirical evidence suggests that this new approach provides

significantly better performance than the Pisarenko method [551 and it

variants, and, the Kumaresan-Tuafts approach [42].[611.

Comparison with the [uaresan-Tufts Method

To shall now consider a time series of form (8.3) in which the relevant

parameters are given by

fl - 0.2, f2 - 0.21, ow2 - 1.778

This particular parameter choice provides a more challenging teat of resolution

capability in that the frequency spacing f2-fl - 0.01 is maller and the SNM of

-5dB is lower than that of time series (8.3). Again ten statistically sample

runs each of length 128 were used for testing four AR type models. In the

first AR model, expression (7.2) with choices of qe - -1, P. - 35, t - 90

(giving 90 IV equation approximations) were aade. Unbiased antocorrelation

estimates were then used to form the 90 x 36 matrix estimate o. Finally, the

optimum autoregressive parameter estimates were generated upon using expression

(7.15). The resultant ten AR(35) spectral estimates are shown in superimposed

plots in Fig. 8.6a where resolution was achieved in each of the ten runs.

Next, the extended antocorrelation matrix model (7.2) with qe 1, Pe - 96, t

- 96, and unbiased antocorrelation lass was tested. Ezpression (7.15) with p -

4 was then used to generate the ak estimates of the AR(96) model. A plot of

the resultant spectra is shown in Fig. 8.6b where resolution was achieved for

each of the ten runs.



The Kumaresam-Tuf ts method. which provides a near maximum-liU'..ihood

performance, was next tested on those same to sample runs [611. The resultant

AR type 3 5 th and 96 th (the optimum KT order choice) order spectra are shows

plotted ia Figs. 8.6. and 8.6d. respectively. The 35th order model was usable

to resolve the sinusoids ia any of the ten rums while the 96th order model

achieved a resolution in each ease. For this example, it is apparent that the

overextended modeling approach advocated Ia this paper has outperformed the

pseudo mauime-likolihood Kumarsamr-Tuf ts method. Moreover, the computational

efficiency of this paper's overextended modeling method (7-.15) is far superior

as will be documented in a forthooming paper.

Adative ARM Modolian

As a final example, the adaptive ARNA modeling procedure to be developed

in Section X was applied to the time series (8.3) in which the covariance node

(k, - 40, k2 - 1) was selected with ARA order p012. The spectral estimates of

five independent runs at data lengths N - 128, N - 256 and N - 1024 nre shown

superimposed in Figure 8.7. Frcm these plots, it is apparent that the twelfth

order ARMA model detects the presence of spectral energy in the neighborhood of

f - 0.2 at data length N - 128. but, the resolution of two spectral peaks is
somewhat unsatisfactory. As the ARMN model adapts to the data, however, two

well defined spectral peaks appear at N - 256. The model has therefore adapted

to the signal using less than 256 time series observations.

To illustrate the performance of this adaptive ARNA approach relative to

popularly used methods, the classical adaptive AR covariance method to be

developed in section XX was next used on the same set of tine series

observation&.- The five spectral plots which arose for an AR(22) model are

shown superimposed in Figure 8.8 at N - 128, N - 256. and, N - 1024. Clearly,

the higher order covariance AR model was usable to satisfactorily resolve the

two sinusoids even at data length N-1024. Thus, the lower order ARU (12,12)

covariance adaptive model significantly outperformed the higher ordor M3(22)

covariance adaptive model. This is indeed noteworthy when it is realized that

some of the more widely used adaptive filters utilize the AR covarian*e model.

This includes the fast LUS algorithm of Norf [251.[461,[47J and the

approximating gradient approach of Widrow [651.
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Paper's Method

Box-Jenkins Spectra
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Fig. 8.1 AR!4A spectral estimates of order (4.4). (a)Exact. (b) Box-
Jenkins maximum- i kel ihood method. (c) Paper's method for tw4.
(d) Paper's methqd for t-8. (e) Paper's Method for t-20.
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Fig. 8.3 Autoregressive (AR) spectral estimates
from 128 time series observations
(a) p - 20 Burg estimate, (b) p a 24
Burg estimate (c) This paper's method
(6.6) with q - 0, p = 20, t - 56
estimate using expression (6.6).
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Fig. 8.4 Autoregressive-moving average (ARMA)
estimates from 128 time series observations
(a) P-q=8, t-70, (b) p-q=12, t-70S
(c) SVD method I with p -q =14, t-50
yielding p-4, (d) SVD mlth~d II with

*-Pe=qe l4 , t-50 yielding p-4.
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Fig. 8.7 Adaptive ARMA (12,12) spectral
estimates with k =40, krl.
(a) N = 128, (b) N =256,
(c) N = 1024.
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IX. AR Modeling: Adaptive Implementation

In section V. a general procedure for effecting an AR model which

represents a set of given time series observations

x(l), x(2), . . . , x(N) (9.1)

was presented. It was there shown that the required modeling entailed using

these time series observations to generate estimates for the entries of the

(p+1)x(p+l) AR autooorrelation matrix as specified by

R(i,j) - rx(i- j ) 1 i i.j i p+1 (9.2)

From a performance viewpoint, the unbiased autocorrelation estimate (5.4) was

suggested as a logical choice for estimating these entries. In any case,

once estimates for the R(i.j) elements have been made, the required AR(p)

model parameters are obtained by solving the linear system of equations

R j - bo1 2  (9.3)
where it will be recalled that the parameter b. is chosen so that the first

component of A is one.

In applications requiring a continuous updating of the AR model

parameters as now time series observations become available (i.e., x(N+1),

x(N+2), ... ), however, the standard unbiased estimator approach poses a

serious computational burden.; To overcome this difficulty, it behooves us to

seek alternate autoorrelation estimators which are more ameanable to an

adaptive solution. With this objective in mind, we shall now consider the

adaytire class of autocorrelation estimators as defined by

N+k2-1

R(i,j) - 1 2 (k+l-i)x(k+l-J) ljip+l (9.4)
N+k2-k1  k-k1  1-lP+1

in which the convention of setting to zero any summand terms x(n) whose

argument lies outside the observation set linf4 has again been adopted.

Although this expzession might initially appear to be unduly contrived, it

does provide us with an autocorrelation estimate of rx(i-j) as called out for

in expression (9.2). More importantly, however, this estimator will be

shortly shown to have a most convenient matrix product representation.

The integer constants kI and k2 which characterize the autocorrelation

lag estimator rule (9.4) are to be selected so that the number of lag

products there used (i.e., N+k2 -k 1 ) at least equals p+l. This requirement
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will generally ensure the invortibility of the autooorrolation matrix
A

estimate R associated with the estimates (9.4). In most cases of interest,

these constants are further confined to the range likl,h2_kp+1 although other

choices are permissable. It then follows that each member of the adaptive

autocorrelation estimator class will be identified by a specific two-tuple

(kl,k2 )l. Moreover, each such estimator will provide a generally different

set of autooorrelation estimates from the given sot of time series

observations (9.1),.

Members of the adaptive class of autooorrelation estimators have a

particularly convenient algebraic representation which we shall employ when

effecting the premised adaptive implementation. Specifically, the

(p+l)x(p+l) autocorrelation matrix estimate that arises upon using the

estimates (9.4) as entries can be always expressed in the following #a"

matrix Product format

^ - XN (9.5)

N+k2-k1

in which XN is the (N+k2-kl)x(p+l) data matrix whose individual elements are

specified by

IN(i,j) - z(kl+i-J) liiffl+k2-kl (9.6)

We have here appended the subscript N to the data matrix so as to explicitly

recognize its dependency on the data length. The incorporation of this

subscript will be also useful when obtaining the promised adaptive

implementation. A straightforward analysis will demonstrate the equivalency

of expr.ssions (9.4) and (9.5). The data matrix is seen to have elements

whose entries are the given time series observations (9.1) as well as zeroes

which appear whenever the time index argument (kl+i-j) falls outside the

observation set lin91.

It is possible to provide a revealing visual interpretation to the

concept of data windowing for this class of estimators. In particular, let

us consider the following (N+p)x(p+l) kernl Toeplitz type matrix which

lAs we will shortly see, the four most widely used members of this class are
the *ovariance method (kl-p+l, k2 =1)- the autocorrolation method (k 1 -1.
k2 -p+l), the prwindow method (kl-1, k2 -1), and, the postwindow method
(kl- l.k 2 -V+l).
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contains, as submatrices, all of the data matrices associated with the

adaptive class of autocorrelation estimators.

i(1) kI - 1

* . Prewindowing

x(p+l) . . . . x*) kI -p+1

= .(9.7)

z(N) *...xNp k2 =

Q .. Postwindowing

L 0 N) k2 -p+l

Upon examination of the data matrix definition (9.6), it is apparent that XN

may be identified with that submatrix of N composed of its k1 st through

(N+k2_l)st rows, inclusively. Thus, corresponding to each adaptive

autocorrelation estimator (i.e., pair (ki,k2)), we may obtain the associated

data matrix using this row identification scheme.

The zeroes which appear in the upper right corner of the kernel matrix

X are there due to the implicit assumption that x(n) - 0 for -p+ljaL0. This

rather unrealistic assumption concerning an unobserved segment of the time

series is commonly referred to as a urewindowing of the data. It is seen

that a degree of prewindowing is incorporated whenever the constant k, is

selected such that liklip. Normally, such choices are to be avoided since

they will generally lead to relatively poor AR modeling due to the

urealistic prewindow assumption thereby being made on the time series. As

kl ranges over the integers 1 to p+l, the degree of prewindowing incorporated

varies from full at k1l= to none at k 1 =p+l. This prewindowing behavior is

conveniently depicted in expression (9.7).

In a similar fashion, the zeroes which appear in the lower left corner

of matrixz are there due to the implicit izindow assumption that x(n) - 0

for N+ljfnf+p. This equally unrealistic assumption concerning an unobserved

segment of the time series is to be generally avoided. A degree of

postwindowiag is incorporated whenever the index k 2 is chosen to lie in the

range 2ik2 .V+l. The smallest value of k2 for which the postwindow assumption
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is avoided is seen to be k2 =1. Thus, as the index k2 ranges from 1 to p41,

the degree of postwindowing incorporated varies from none at k2 -1 to full at

k2-p+1.0
The four most widely used of the adaptive autocorrelation estimator

methods are listed in Table 9.1 (e.g., see refs. [251,146],147). Each of

the methods there shown are seen to entail combinations of maximma windowing

and no windowing. In the covarianoe method, the oharacteristic constants are

chosen to be k, = p+1 and k2 -1. This particular choice is seen to provide

the lartost number of lag products in the autocorrelation estimates (9.4)

over which no data windowing is involved. As might be expected, the

covariance method generally provides the best AR modeling and spectral

resolution performance when compared with the remaining members of the

adaptive autocorrelation estimator class. With this in mind, unless special

considerations dictate otherwise, the oovariance method is the most

preferable choice fo- an adaptive implementation.

In the three remaining methods listed in Table 9.1, it is seen that a

maximum mount of prewindowing, postvindowing, or, both are being employe*.

It is then not surprising that each of these methods will generally provide

relatively poor modeling performance. This will be particularly true for

data lengths N which are not significantly larger than the AR order parameter

p. As the data length N increases so that N)>p, however, each of the four

methods will provide comparable modeling performance-. This is due to the

fact that the windowed portions of the data matrix will play a
A

proportionately maller role in the estimate R as N increase&. An

appreciation for this behavior is readily obtained upon examination of the

kernel matrix (9.7).

As suggested earlier, the primary reason for preferring the adaptive

autooorrelation estimator (9.4) over the standard unbiased estimator (5.4) is

that the former may be used to effect a oomputationally efficient adaptive AR

modeling method. To gain an insight as to why this is so, let us first

substitute the autocorrelation matrix estimate (9.3) into the fundamental AR

modeling expression (9.3). The required parameters of the AR(p) model are

then found by solving the resultant system of nmal equations

XIN*3J - (N+k2-kl) lbo 2 f (9.1)

in which the normalizing parameter bo is to be selected so that the first

component of AN is one. The data matrix product XNeIN in this expression is
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IMMOD CONSTANT CONSTANT STATISTICAL
kI k 2  PROPERTIES

or R

1. Covarinee p+1 1 (i) unbiased
(No windowinS) (ii) consistent

2. Full Prowindoving 1 (i) biased
No PostwindovinS (ii) oonsistent

3. Full Postwindowing p+1 p1 (i) biased
No Prewindowing (ii) consistent

4. Autoorrelation 1 p+1 i) biased
(Full pro and (ii) consistent
postwindowing) (iii) Toeplitz

Table 9.1 Adaptive AR Autocorrelation Estimation Methods

seen to comnletely characterize the desired autoregressive parameter vector

atN associated with the N time series observations (9.1).

As the tine index N is inoremented by one (i.e.. the (N+1)st tine series

observation x(N+1) becomes available), it is seen that a now system of normal

equations of form (9.8) will arise in which the index N is replaced by N+Il.

The resultant data matrix product IN+I1XNI which characterizes this now

system of equations will in turn give rise to the updated autoregressive

parameter vector aN+. o can continue this systematic procedure to generate

the updated autoregressive parameter vectors AN 2. .N+3, e. as the new tine

series observations x(N+2). x(N+3), @et. become available. The ability to

evolve an adaptive solution procedure when using this approach will be then

dependent on our obtainiag an effective method for updating the data matrix

products jIjXN as N evolves.

Adantive Alaorith: kaM Li
The adaptive expression relating the successive data matrix products

will be considerably eased if the constant k2 is s"leoted so as to provide

either no or full postwindowing. To illustrate this point let us first
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examine the case of nomostwindowina for whioh k2 =s1 while allowing k I to take

on say value in [1.p+1]. Fros examination of the defining expression (9.6).

it is seen that the data matrix XN[ may be obtained by appending a row

vector to the bottom of data matrix XN. This results in the following

recursion on the data matrix products
X- * + +1 N+1 N p+l (9.9)

in which jjN+l is the above mentioned appended lx(p+l) row vector

AN+, - [x(N+I),. x(N), ... , x(N+1-p)] (9.10)

It is important to note that this data matrix product recursive expression

commences at N-p+I which corresponds to the first time index at which XZ

has its full form. Thus, the matrix X4+lXp+l serves the role of initializing

the above recursive relationship. The elements of this initializing matrix

are obtained from expression (9.4) upon setting k 2 -1 and N-p+l1 that is

p+l

;+e1 Xp+l(iij) - I x(k+1-i) x(k+l-j) I , i . p+l (9.11)

k-k 1  l jlp+1

It is interesting to note that although each member of the nonpostwindow

class (as identified by k2 =1 and kls[l.p+l]) will be governed by the IJM

recursion (9.9), they will each give rise to a generally different set of

autocorrelation estimates. This is due to the fact that the initializing

matrix (9.11) will be generally different for various choices of kl.

From recursive expression (9.9), it is seen that successive data matrix

products differ by the rank one matrix + + This simple

interrelationship will in turn enable us to obtain a recursive expression for

the data matrix product inverses [X N]-I. We are interested in these

inverses since they will be ultimately used when solving expression (9.8) for

the AR model parameters. This required matrix inverse recursion will make

use of expression (9.9) and the following well known lemma

Lema 9.1: Lot A and A+ * y. each be nonsingular sz matrices where 3

and y are ls vectors, then

(A + &0 ZI-1 -A7- (Aie] vA]1 (9.12)
(1 + y A71 C)
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Upon setting A - I ZN and I I I " +1 in this l smma. the required recursive

matrix inverse expression is found to be
. y;+1 jN+l

[];+I N+i) 1 - (Xt XN)- -' for N ) p+kl

where (9.13)

!N+1 N14'N-

In using this matrix inverse recursion, it is important to note that it is

only applicable for time indices N I p+k1 . This is a direct consequence of

the fact that the data matrix products X3 XN are singular for all tine

indices N < p+kI in the nonpostwindowing case k2 -1. To use this recursive

approach, it is therefore necessary to first compute the initializing matrix

inverse [Xg XN]-1 for N - p+kj using a standard matrix inversion routine such

as Gaussian elimination. Subsequent matrix inverses for N > p+kl may be then

efficiently obtained upon using recursion formula (9.13).

To complete the adaptive AR modeling procedure, we next incorporate the

data matrix product inverse routine (9.13) into the AR modeling equations

(9.8). A little thought will convince oneself that the simple three step

procedure outlined in Table 9.2 will provide the required adaptive

autoregressive parameter vector procedure. The second step is seen to yield

the unnormalized solution to expression (9.8) with N replaced by N+I while

the third step ensures that the first component of hN is one. In terms of

computational complexity, an examination of equation (9-.13) indicates that

2(p+1)2 operations will be required for updating [Xft] - 1 .  The resutant

antoregressive parameter vector solution as represented by steps 2 and 3 of

Table 9.2 will require an additional (p+l) operations. Thus, the

computational complexity of the nonpostwindowing adaptive algorithm (i.e.,

k2 =1) is then o(p 2 ). This algorithmic approach is applicable for any

selection of the constant k1 with the most likely choices being from the

range [l,p+l]. The most useful implementation of this adaptive algorithm

corresponds to the selection kl-p+l. In this case, the covariance method as

specified by kl-p+l, k2-1 is obtained. As pointed out previously, this

choice normally provides the best adaptive AR modeling performance behavior.
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Step 0: Input Data: z(N+l), EXf]
- 1

stop 1: Compute ; U+11-1 using recursion (5.14)

Stop 2: Lot £ +L+1-

Step 3: X1+1 o(i)- 1 I Where oC() is the first component of €.

Table 9.2: Adaptive A Modeling Algorithm-Covariance Methods

(No-2p+l) and Prewindow (No-p+1) methods.

Adaptive Algorithm k2 - p+l

Using similar reasoning, it is also possible to evolve an efficient

adaptive algorithm for the full prewiudowing case k 2 - p+l. In this

situation, it is readily found that the data matrix products are recursively

related acoc :ding to

14+11N+1 - iA1N + DN+l g p+1 (9.14)

in which DN  is a (p+l)z(p+l) Toeplitz conjugate symetric matrix with

elements { z(N+l) x(N+l+i-J) i i j

( )(9.1)

x(+l) I(N+l+i-j) j i

Due to the Toeplitz conjugate symmetrio property of the perturbation matrix

D , it will be possible to evolve an efficient adaptive method for inverting

the data matrix products (IXNO]. The computational complexity of this matrix
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inversion routine will be also o(p 2 ). Th. details of this routine are rather

involved and will be therefore not given here due to space limitations.

Since the covariance method is the most preferable choice for the adaptive

class of autocorrelation estimators, however, this omission is not serious in

any oase. It is to be noted that efficient adaptive lattice structured

algorithms may also be employed for updating the AR parameters [461.[47].

Forward-Backward Aporoach

In some applications, it is possible to achieve a degree of improvement

in the AR spectral models by using the concept of data time reversal.

Namely, it makes use of the observation that if (x(n)) represents a

vide-sense stationary process, then its time transposed conjugated image as

specified by

y(n) - I(s-n) (9.16)

will also be wide-sense stationary for any choice of the shift variable v.

Moreover, the autocorrelation sequence of this time transposed conjugated

image is readily found to be identical to that of the original time series,

that is

ry(n) - rx(n) (9.17)

It is now possible to use this time transpose property to effect a new

autocorrelation estimation scheme. In particular, upon selecting suN-i, the

original observation set (9.1) is seen to give rise to the following set of

time transposed conjugated elements
y(n) = X(N+I-n) 1 < n J N (9.18)

If these time reversed observations are incorporated into expression (9.4),

it will be generally found that a new set of autocorrelation estimates will

result. In particular, the overall backward aotocorrelation matrix estimate

will take the form.

A 1
R - (9.19)

Nhk2-k1

in which the elements of the (N+k2-kl)x(p+l) matrix YN are given by

YN(i,j) = Z(N+l-kl-i+j) 1 J i J N+k2-kI  (9.20)

1 .j Sp+l
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Although the forward and backward autocorrelation matrix estimates (9.5)

and (9.19) will be generally different (except for the autocorrelation choice

kI - 1, k2 - p+l) - they ate each seeking to estimate the same underlying

autooorrelation matrix R. It then follows the so-called forward-backward

estimate as specified by

A 1
m -[__+Y__N_ (9.21)

2 (N+k2-k1)

will provide an additional improvement in autocorrelation estimation

fidelity. This is due to the fact that each of the entities XtN and YNYN

will contain lag products not found in the other.

The additional autocorrelation estimation fidelity achieved in using

this time transposition approach typically results in a marginal improvement

in spectral estimation performance. Fortunately, this improvement is not

accrued at the cost of an excessive increase in computational complexity.

This is due to the fact that the matrices Xk and " which form R are Tooplitz

type. It is therefore possible to devise efficient algorithms that will

solve the system of equations

[x + ,,t]N 11 (9.22)

in which the computational complexity is o(p2).

AR Model Order Determination

One of the principal considerations in obtaining AR models from raw time

series observations is that of model order selection. It has been observed

that when p is selected too low, there will be generally too few model poles

to adequately represent the underlying spectrum. On the other hand, too high

of a choice for p will typically result in spurious effects (e.g.. false

peaks) in the spectral estimate. With these thoughts in mind, investigators

have proposed various order selection procedures. Three of the more widely

" used techniques are Akiake's final prediction error method as well as his

information criterion [1],[2J,[4], and, Parson's 'criterion autorsressive

transfer' function [54]. Although these procedures typically work well, they

can yield unsatisfactory performance in some cases (e.g., see ref. [34] and

C621). The user is therefore cautioned to use discretion in applying the

above and other model order determination procedures. The method to be
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ultimately used should be determined through empirical experimentation based

on time series related to the specific application under consideration.

It is possible to apply a conceptionally straightforward procedure for

model order selection which does not possess many of the drawbacks alluded to

above. It is based on the observation that in the case where perfect AR

antocorrelation lag values are given, the (p+l)x(p+l) autocorrelation matrix

R with elements

R(iJ) - rx(i-J) 1 iJ i p+l (9.23)

will have rank p+l so long as p is less than or equal to the order of the

underlying AR process (hereafter taken to be Pl). For all values of p

greater than pl, however, the rank of the (p+l)x(p+l) autocorrelation matrix

will be pl. Thus, to determine the proper rank selection in the idealistic

case of perfect autocorrelation lag information, we simply increase the

parameter p until the rank of R is loss than full (i.e., less than p+l).

This will occur at p - Pj+l, thereby giving us the appropriate order

selection.- It should be noted that when the antooorrelation lags being used

don't correspond to an AR process, then the matrix R will be generally of

full rank for all p 11.

In the more realistic case in which raw time series are used to form the
A

autocorrelation matrix estimate R, the rank of this matrix will be typically

full for all values of p. This will be true even when the time series is an

AR process. This seeming contradiction arises due to statistical errors

inherent in any antocorrelation lag estimation procedure that might be used
A

in forming R. Nonetheless, even though R will have full rank, it will be

generally found that when p > Pl, this matrix will have (p-p1) of its

eigenvalues 'close' to zero. Thus, an order selection procedure which has

provided satisfactory performance is one entailing examination of the
A

eigenvalue behaviour of the autocorrelation matrix estimate R as a function

of p. The appropriate order choice will be that value of p, denoted by pl,
A

for which R has (P-Pl) of its eigenvalues sufficiently close to zero for all

p > Pl. A particularly attractive method (i.e., the SVD method) for

implementing this procedure was given in Section X.
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1. ARM& Modeling: Adaptive Implementation

Then an adaptive implementation of the ARMA modeling methods as

described in Sections VI and VII is desired, it will be necessary to

incorporate autocorrelation lag estimate procedures which are compatible with

an adaptive implementation (the unbiased estimator is not compatible). In

particular. we shall now examine a class of estimators which provides an

adaptive mechanism for estimating the elements of the autocorrelation matrix

R1 as required in expression (6-.6). This class of adaptive estimators will

be governed by the relationship

A N-q-2+k2

Rl(i,j) - N_________i I(k+l-i)x(k+q+2-j) ljijt (10.1)
N+k 2-kl- q-- k-k 1  lJSp+1

It is apparent that this expression provides an estimate for the lag element

rx(q+l+i-j) which is the (i~j)th element of the autocorrelation matrix Rj as

defined in equation (6.2). The fixed constants k, and k2 which characterize

this estimator are normally selected so that the number of lag products there

used (i.e., N+k2-kl-q-1) equals or exceeds p+l. This choice will generally
A A

ensure the invertibility of matrix R*WR1 and thereby a unique solution for

the autoregressive parameter when using expression (6.6). For reasons which

will be shortly made apparent, these constants are usually further

constrained to satisfy 1 j kI j t and 1 j k2 i p+1 although other choices are

possible.

Each autocorrelation estimator in the adaptive class (10.1) will be

identified by a particular choice of the two-tuple (kl,k2). Moreover, each

estimator in this class will provide a generally different set of

autocorrelation lag estimates from the set of time series observations x(n)

for 1 j n . N. Clearly, our ultimate desire is to select that estimator

which generally provides the best ARA modeling. The cjvjjMnq estimator as

identified by klit and k2-1 furnishes an obvious choice. Before treating

specific estimators, however, let us first examtne the general adaptive

estimator (10.1).

The primary reason as to why the adaptive estimator (10.1) lends itself

to an adaptive implementation is due to the algebraic structure implicitly

contained within its definition. Namely, the autocorrelation matrix estimate
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as formed from the entries (10.1) nay be always representable in the

convenient matrix product format

R, + It IN (10.2)
NI= k2_kl~q_1

in vh the (N+k 2-kl-q-1)z(p+l) data matrix 1N has its elements specified by

]N(i,j) - x(kl+q+l+i-J) 1 j i j N+k 2 -kl-q-1 (10.3)

1 11 '1p+1
while the (N+k 2 -kl-q-1)zt data matrix YN has elements

YN(i,j) - z(k 1 + i-J) 1 j i j N+k 2-kl-q-1 (10.4)

1jJ . t

A simple matrix manipulation will prove the equivalencies of expressions

(10.1) and (10.2). We again adopt the convention of setting to zero a

element entries of IN or YN for which x(n) lies outside the observation

interval 1 j a j N, and, we also attach the subscript N to those data

matrices so as to explicitly recognize there dependocy on data lengtk.

As in the AR modeling case, the parameters k1 sad k2 that identify the

autocorrelation estimator (10.1) can give rise to data vindowiag. To see why

this is so, let us consider two kernel Toeplitz type matrices which contain.

as submatrices, all of the data matrices associated with the adaptive class

of ARNA autooorrelation estimators. These kernel matrices are specified by

x(q+2) . . . z(q-p+2) x(1) k1 -1

"0 prewindowing

x(t+q+l) . . . x(t+q-p+ll x(t) . . . .~l) kl-t

..

N- = JN- = (10.5)

k2u'p41 xlN) z(N~p-u-1). z(Nlp-i-t)



Upon oxamination of expressions (10.8) and (10.4), it is readily established

that the data matrix IN (or YN) may be identified with that submatrix of the

kerneI matrix ZN (Or V) oaposed of its kjst through (N-q-2+k2 )ot rows

inclusivoly. Thus, corresponding to each adaptive antocorrelation estimator

(i.e., choice of pair (klk 2 )), there will be an associated pair of data

matrices obtained by using this row identification scheme.

The zeroes which appear in the upper right corner of kernal matrixz N

are there due to the implicit prewiadow assumption that x(n) - 0 for 2-t-(Oaj0.

This unrealistic restriction on an unobserved segment of the time series is

to be norally avoided. It is to be noted from the representation for TN

that a selection of klgt will avoid any data prowindowing. On the other

hand, a degree of prowindowing is incorporated whenever k, is such that 1

Jklit-1. Thus, as k1 ranges over the integers 1 to t, the mount of

prowindoving varies from full at kl-1 to none at kl - t..

In a similar fashion, the zeroes which arise in the lower loft corner of

kernel matrix XN are there due to the implicit postwindow assumption that

x(n) - 0 for N+linS+p. This contrived assumption on an unobserved segment

of the time eries is also to be avoided. Upon examination of the kernel

matrix N, it is apparent that postwiadowing may be avoided by seleoting k2

1. It is also clear that the degree of postwindowing varies from none at

k2 =i to full at k2=p+l..

The four most appealing choices for adaptive estimators are identified

in Table 10.1 in which it is noted that each involves combinations of naxims

windowing and no windowing. The covarianc method entails that particular

combination of no prewindowing (i.e., kl - t) and no postwindowing (i.e.,

k2-1). This method is seen to provide the farest amber of lag products

(i.e., N-q-t) in oestimator (10.1) for which no data windowing is involved.

As might be expected, the coverig* method typically provides the best

modeling performance from the AIN& adaptive class of atocorrelation

estimators.

The three other methods listed in Table 10.1 are seen to employ either

full prowindowing, full poastwindowing, or, both. It Is clear that the

modeling performance capabilities of each of these three methods will tod to

be relatively poor when the data length N is only marginally larger thea the

ARNA order parameter p or the parameter t. On the other hand, for the case
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in which N is such larger than either p or t, each of the methods listed in

Table 10.1 will provide comparable modeling performance. This is a

consequenee of the faet that the windowed portions of the data matrices- N

a" N play a proprtionately mailer role in the estimate of Il as N

increases. ln an case, unless special considerations dictate otherwise, the

covariacoe method is the most preferable choice for an adaptive

Implementation.

EC/OD CCNSTT CaRSTMT STATISTICAL
kI  k2  PP0UTIS

1. Covariance t 1 (i) unbiased
(No windowing) (ii) Consistent

2. Fall Prewindowing 1 1 i) biased
No Postwindowing (i) consistent

3. Full Postwindowiag t p+1 Mi) biased
No Prewindowing (ii) consistent

4. Autocorrelation 1 p+l i) biased

(Pull pre and (ii) consistent
postwindowing) (iii) Toeplitz

Table 10.1: Four AREA Adaptive Atocorrelation
Estimator Methods

In order to provide the reason as to why members of the adaptive class

of atocorrelation estimators are meanable to an adaptive implementation,

let u substitute the matrix product representation for Rl as given by

expression (10.2) into the basic ARMA modeling equation (6.6). The resultant

autoregressive parmeter veeter is then obtained by solving the normal

equations
*NIA -IINS* (1o.6)

where the weighting matrix W has been set equal to the identity matrix while

the normalizing constant a is selected so that the first ompoant of AN is
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one. Ptom this expresion it is apparent that the data matrix SBoduat
INV* completely identifies the ARM model's autoregrossive parmeter

vector* Is Order to compute Am, it will be then necessary to computo the

data matrix products inverse, at acok value of N where the autoregressive

parmeter vector is required. This can be a particularly imposing

computational task if real time signal processing is to be

arohiovo&.

Adaptive Algorithms k2 = 1

When the autoregressive parmetor vector is required at each time indez

N, it will be beneficial to offet an adaptive method for updating the data

matrix product in expression (10.6). This adaptive implmentation is readily

achieved for the noupostwindowing caso k2 =1 in which kI may take on any

appropriate value (e.g., l.kl.t). Namely, upon oxmination of expression

(10.J) with k2 o1, it is seen that the data matrices XN+I sad 31ei+1 are

obtained by appondling appropriate row vectors to the bottom of data matrices

AN and YN, respetively. Using this property, the following recursion on the

data matrix product is obtained

T*i+i 1N+1 - !4XN + IN N . t (10.7s)
where IN and V( are the above mentioned lz(p+l) and lxt row vectors, that are

appended to YN and YN, rospootivoly. Those vectors ore s1ocified by

I - [z(N+l), x(N), ... , x(N+l-p)J (10.7b)

YN " [z(-q), x(N-q-1), .... x(N+-q-t)) (10.7.)

It is to be noted that recursive expression (10.7a) holds only for time

indices Njt since t is the first time index where 1*t takes on its full
algebraic farm. With this in mind, TtI thou serves the role of an

initialiing matrix for this recursion. Although the puerturbation matrix

in this reclusion does not depend on the parameter kl, the initializing

matrix !tIt does. As such, the sequence of mtrix products as generated by

expression (10.7s) will be different for various choices of kX.

The full data matrix product as required in expression (10.6) say be

readily obtained from relationship (10.7) and takes on the following

recursive farm

~4 .1Ye1!Al1NN + $ + + (~~
N t (10.8a)

whore AN is the lx(r'l) vector given by

(10 .8b)



An examination of this recursive expression indicates that t(p41) operations

are required to computo j, while another 2(p+1) 2 operations are expeaded in

updating the fall matrix product (10.8a). In arriving at this omputatiomal

requirement measure, it has been tacitly assumed that the matrix products

1YZN ~a #N* are available,.
Whe updates of the autoregressive parameter vectors a are not required

at each tine index N, we could then use recursions (10.7) and (10.8) to

compute the data matrix products YtN ad xftift in a computationally

efficient manner. At those time instants at which the evaluation of A. is

required, we would then simply solve the ARMA modeling equations (10.6Y). If

standard procedures are used, this solution will entail on the order of
(p+l)3 $ oputa tlozv.

In various applications, however, it may be necessary to compute the

autoregrossive parameter vector at sach (or nearly each) value of time N.

For such cases, it would be muck more advantageous to replace the recursion

(10.8) by a recursion for the inverse matrix product [XftNif]-Il. To effset

this recursion, we note from relationship (10.8) that the matrix products

VrNYAX at two contiguous time indices (i.e.. N and N+l) differ by the sum

of three rank one matrices- Using this fact, it is then possible to apply

Lomma 9.1 successively three times to effect the desired matrix product

inverse recursion.- The main steps of this recursive inversion are listed in
Table 10.2. It is important to note that this recursion emeances at N -

qp++k 1 +l which corresponds to the first time instant at which the matrix

product %YNXN is generally lnvertible. Steps S throush 6 provide the

mooazmm for this matrix product inversion while step 7 gives the required

solution to the ARNA modeling equations (10.6). In ter of computatiomal

complexity, it is readily shown that the amber of multiplication and

addition operations required to implement this algorithm is of order p(t Sp)

for sach data point update.

The adaptive algorithm described in Table 10.2 is for the partieular

nonpostwindowing selection k2-1 wherein the parameter k1 will be typically

selected to satisfy 1 j kt j t. As suoggsted earlier, the oovarieao method

identified by klit and k2l generally provides the best overall modeliag

performance for the class of adaptive estimators, We may therefore ua" the

adaptive ARMA modeling method to provide an efficient procedure for

recursively implementing the desirable oovariamo method. As a final mete,
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although it is possible to effect adaptive implementation* for other choices

of kI (i.e., kI'), the resultant algorithm is ot a much more omploz nature.

Sine the oovaiianoe method is almost invariably used, however, we shall be

content with the noapostwindowing algorithm.

It is also possible to provide a lattice implementation of the adaptive

algorithm here developed (191 and [491. This will entail restricting t - p

thereby imparting a decrease in spectral estimation performaace. The

advantage accrued by using the lattice implemetation is computational in

nature. In particular, the ==bar of operations to update the lattice

network is o(p up) for each now time series observation.

*
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S'73 0 TI5e apsut to ommee the algorithm at N - eqpkl+1 Is
Itand [*4V*N11l

3M 1 N - q4p1+11

S7P 2 Compute YN+f 3W+1 using ezpression (10.7)

1W 4 jN .. 11 - AN. A1-1 - E[~N];%]11

Compute [l1 + 3f 11-1 using Lams 9.1

1W 5 3-ft J' =J, Z.A-(Al + At X1-

Compute [A2 + S xy] - 1 using Lemma 9.1

STE 6 j1 - (WNy*) ZNt 3 -IN. A -- [-A 2 
+ ! 12-1

Compute (A3 + ; Y31-1 - ZNTN+17N4+1N+1]- 1 using
Lmma 9.1

MWE 7 EXn. -Y+N 1-12

Jfl+l- (1)1L where o(1) is the first component of

STEP 8 Let N-N+1, GOTO S1TEP 2

TABLE 10.2: Adaptive Algorithm for Computing jW+I

* iI
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XII. Conclusions

A philosophy direoted towards the rational modeling of wide-sense

stationary time series has been presented. It is explicitly based upon the

Yule-Valker equations which characterize the autocorrolation sequence

associated with the rational tine series being modeled. In particular, the

key concept is that of using an overdetermined set of Yule-Walker equation

evaluations for estimating the parameters of a postulated rational model.

This approach has been found to reduce the data induced hypersensitivity of

the parmetor estimates in comparison to many of the more popular parmetric

approaches which invoke a minimal set of evaluations for obtaining the

parmeter estimates. These latter methods include the Burg algorithm, many

LAS methods. end the one-step predictor. Comparative examples illustrating

this reduced hypersensitivity have been given in which the modeling is based

on both exact autoorrelation lag information, and, raw time series

observations.

The method of singular value decomposition was next introduced and was

used to obtain an effective rational model order determination procedure as

well as providing a novel rational modeling procedure whoe performance has

been empirioally found to often exceed that of existing techniques. Studies

are currently under way to more effectively use this SYD adoption for

achieving yet further performance improvements.
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